Loading…

Water entry of deformable spheres

When a rigid body collides with a liquid surface with sufficient velocity, it creates a splash curtain above the surface and entrains air behind the sphere, creating a cavity below the surface. While cavity dynamics has been studied for over a century, this work focuses on the water entry characteri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2017-08, Vol.824, p.912-930
Main Authors: Hurd, Randy C., Belden, Jesse, Jandron, Michael A., Tate Fanning, D., Bower, Allan F., Truscott, Tadd T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-83f51c08f55b078bd2e33385fd5356e28f56a8c990f97f9ca05b47df6759f3193
cites cdi_FETCH-LOGICAL-c368t-83f51c08f55b078bd2e33385fd5356e28f56a8c990f97f9ca05b47df6759f3193
container_end_page 930
container_issue
container_start_page 912
container_title Journal of fluid mechanics
container_volume 824
creator Hurd, Randy C.
Belden, Jesse
Jandron, Michael A.
Tate Fanning, D.
Bower, Allan F.
Truscott, Tadd T.
description When a rigid body collides with a liquid surface with sufficient velocity, it creates a splash curtain above the surface and entrains air behind the sphere, creating a cavity below the surface. While cavity dynamics has been studied for over a century, this work focuses on the water entry characteristics of deformable elastomeric spheres, which has not been studied. Upon free surface impact, an elastomeric sphere deforms significantly, giving rise to large-scale material oscillations within the sphere resulting in unique nested cavities. We study these phenomena experimentally with high-speed imaging and image processing techniques. The water entry behaviour of deformable spheres differs from rigid spheres because of the pronounced deformation caused at impact as well as the subsequent material vibration. Our results show that this deformation and vibration can be predicted from material properties and impact conditions. Additionally, by accounting for the sphere deformation in an effective diameter term, we recover previously reported characteristics for time to cavity pinch off and hydrodynamic force coefficients for rigid spheres. Our results also show that velocity change over the first oscillation period scales with the dimensionless ratio of material shear modulus to impact hydrodynamic pressure. Therefore, we are able to describe the water entry characteristics of deformable spheres in terms of material properties and impact conditions.
doi_str_mv 10.1017/jfm.2017.365
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973733253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_365</cupid><sourcerecordid>1973733253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-83f51c08f55b078bd2e33385fd5356e28f56a8c990f97f9ca05b47df6759f3193</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqGw8QOCWEk4-2I7HlHFl1SJBcRoOckZGjVNsdOh_x5X7cDAdCfd874nPYxdcyg5cH3f-6EUaSlRyROW8UqZQqtKnrIMQIiCcwHn7CLGHoAjGJ2xm083UchpPYVdPvq8Iz-GwTUryuPmmwLFS3bm3SrS1XHO2MfT4_v8pVi8Pb_OHxZFi6qeihq95C3UXsoGdN10ghCxlr6TKBWJdFCubo0Bb7Q3rQPZVLrzSkvjkRucsdtD7yaMP1uKk-3HbVinl5YbjRpRSEzU3YFqwxhjIG83YTm4sLMc7F6CTRLsXoJNEhJeHnE3NGHZfdGf1v8Cv4ieXFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973733253</pqid></control><display><type>article</type><title>Water entry of deformable spheres</title><source>Cambridge Journals Online</source><creator>Hurd, Randy C. ; Belden, Jesse ; Jandron, Michael A. ; Tate Fanning, D. ; Bower, Allan F. ; Truscott, Tadd T.</creator><creatorcontrib>Hurd, Randy C. ; Belden, Jesse ; Jandron, Michael A. ; Tate Fanning, D. ; Bower, Allan F. ; Truscott, Tadd T.</creatorcontrib><description>When a rigid body collides with a liquid surface with sufficient velocity, it creates a splash curtain above the surface and entrains air behind the sphere, creating a cavity below the surface. While cavity dynamics has been studied for over a century, this work focuses on the water entry characteristics of deformable elastomeric spheres, which has not been studied. Upon free surface impact, an elastomeric sphere deforms significantly, giving rise to large-scale material oscillations within the sphere resulting in unique nested cavities. We study these phenomena experimentally with high-speed imaging and image processing techniques. The water entry behaviour of deformable spheres differs from rigid spheres because of the pronounced deformation caused at impact as well as the subsequent material vibration. Our results show that this deformation and vibration can be predicted from material properties and impact conditions. Additionally, by accounting for the sphere deformation in an effective diameter term, we recover previously reported characteristics for time to cavity pinch off and hydrodynamic force coefficients for rigid spheres. Our results also show that velocity change over the first oscillation period scales with the dimensionless ratio of material shear modulus to impact hydrodynamic pressure. Therefore, we are able to describe the water entry characteristics of deformable spheres in terms of material properties and impact conditions.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.365</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Coefficients ; Deformation ; Deformation effects ; Deformation mechanisms ; Dynamics ; Elastomers ; Experiments ; Formability ; Free surfaces ; Hydrodynamic pressure ; Hydrodynamics ; Image processing ; Imaging techniques ; Oscillations ; Properties ; Rigid-body dynamics ; Shear modulus ; Spheres ; Studies ; Velocity ; Vibration</subject><ispartof>Journal of fluid mechanics, 2017-08, Vol.824, p.912-930</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-83f51c08f55b078bd2e33385fd5356e28f56a8c990f97f9ca05b47df6759f3193</citedby><cites>FETCH-LOGICAL-c368t-83f51c08f55b078bd2e33385fd5356e28f56a8c990f97f9ca05b47df6759f3193</cites><orcidid>0000-0003-1613-6052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017003652/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Hurd, Randy C.</creatorcontrib><creatorcontrib>Belden, Jesse</creatorcontrib><creatorcontrib>Jandron, Michael A.</creatorcontrib><creatorcontrib>Tate Fanning, D.</creatorcontrib><creatorcontrib>Bower, Allan F.</creatorcontrib><creatorcontrib>Truscott, Tadd T.</creatorcontrib><title>Water entry of deformable spheres</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>When a rigid body collides with a liquid surface with sufficient velocity, it creates a splash curtain above the surface and entrains air behind the sphere, creating a cavity below the surface. While cavity dynamics has been studied for over a century, this work focuses on the water entry characteristics of deformable elastomeric spheres, which has not been studied. Upon free surface impact, an elastomeric sphere deforms significantly, giving rise to large-scale material oscillations within the sphere resulting in unique nested cavities. We study these phenomena experimentally with high-speed imaging and image processing techniques. The water entry behaviour of deformable spheres differs from rigid spheres because of the pronounced deformation caused at impact as well as the subsequent material vibration. Our results show that this deformation and vibration can be predicted from material properties and impact conditions. Additionally, by accounting for the sphere deformation in an effective diameter term, we recover previously reported characteristics for time to cavity pinch off and hydrodynamic force coefficients for rigid spheres. Our results also show that velocity change over the first oscillation period scales with the dimensionless ratio of material shear modulus to impact hydrodynamic pressure. Therefore, we are able to describe the water entry characteristics of deformable spheres in terms of material properties and impact conditions.</description><subject>Coefficients</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Deformation mechanisms</subject><subject>Dynamics</subject><subject>Elastomers</subject><subject>Experiments</subject><subject>Formability</subject><subject>Free surfaces</subject><subject>Hydrodynamic pressure</subject><subject>Hydrodynamics</subject><subject>Image processing</subject><subject>Imaging techniques</subject><subject>Oscillations</subject><subject>Properties</subject><subject>Rigid-body dynamics</subject><subject>Shear modulus</subject><subject>Spheres</subject><subject>Studies</subject><subject>Velocity</subject><subject>Vibration</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EEqGw8QOCWEk4-2I7HlHFl1SJBcRoOckZGjVNsdOh_x5X7cDAdCfd874nPYxdcyg5cH3f-6EUaSlRyROW8UqZQqtKnrIMQIiCcwHn7CLGHoAjGJ2xm083UchpPYVdPvq8Iz-GwTUryuPmmwLFS3bm3SrS1XHO2MfT4_v8pVi8Pb_OHxZFi6qeihq95C3UXsoGdN10ghCxlr6TKBWJdFCubo0Bb7Q3rQPZVLrzSkvjkRucsdtD7yaMP1uKk-3HbVinl5YbjRpRSEzU3YFqwxhjIG83YTm4sLMc7F6CTRLsXoJNEhJeHnE3NGHZfdGf1v8Cv4ieXFk</recordid><startdate>20170810</startdate><enddate>20170810</enddate><creator>Hurd, Randy C.</creator><creator>Belden, Jesse</creator><creator>Jandron, Michael A.</creator><creator>Tate Fanning, D.</creator><creator>Bower, Allan F.</creator><creator>Truscott, Tadd T.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-1613-6052</orcidid></search><sort><creationdate>20170810</creationdate><title>Water entry of deformable spheres</title><author>Hurd, Randy C. ; Belden, Jesse ; Jandron, Michael A. ; Tate Fanning, D. ; Bower, Allan F. ; Truscott, Tadd T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-83f51c08f55b078bd2e33385fd5356e28f56a8c990f97f9ca05b47df6759f3193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coefficients</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Deformation mechanisms</topic><topic>Dynamics</topic><topic>Elastomers</topic><topic>Experiments</topic><topic>Formability</topic><topic>Free surfaces</topic><topic>Hydrodynamic pressure</topic><topic>Hydrodynamics</topic><topic>Image processing</topic><topic>Imaging techniques</topic><topic>Oscillations</topic><topic>Properties</topic><topic>Rigid-body dynamics</topic><topic>Shear modulus</topic><topic>Spheres</topic><topic>Studies</topic><topic>Velocity</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurd, Randy C.</creatorcontrib><creatorcontrib>Belden, Jesse</creatorcontrib><creatorcontrib>Jandron, Michael A.</creatorcontrib><creatorcontrib>Tate Fanning, D.</creatorcontrib><creatorcontrib>Bower, Allan F.</creatorcontrib><creatorcontrib>Truscott, Tadd T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurd, Randy C.</au><au>Belden, Jesse</au><au>Jandron, Michael A.</au><au>Tate Fanning, D.</au><au>Bower, Allan F.</au><au>Truscott, Tadd T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water entry of deformable spheres</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-08-10</date><risdate>2017</risdate><volume>824</volume><spage>912</spage><epage>930</epage><pages>912-930</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>When a rigid body collides with a liquid surface with sufficient velocity, it creates a splash curtain above the surface and entrains air behind the sphere, creating a cavity below the surface. While cavity dynamics has been studied for over a century, this work focuses on the water entry characteristics of deformable elastomeric spheres, which has not been studied. Upon free surface impact, an elastomeric sphere deforms significantly, giving rise to large-scale material oscillations within the sphere resulting in unique nested cavities. We study these phenomena experimentally with high-speed imaging and image processing techniques. The water entry behaviour of deformable spheres differs from rigid spheres because of the pronounced deformation caused at impact as well as the subsequent material vibration. Our results show that this deformation and vibration can be predicted from material properties and impact conditions. Additionally, by accounting for the sphere deformation in an effective diameter term, we recover previously reported characteristics for time to cavity pinch off and hydrodynamic force coefficients for rigid spheres. Our results also show that velocity change over the first oscillation period scales with the dimensionless ratio of material shear modulus to impact hydrodynamic pressure. Therefore, we are able to describe the water entry characteristics of deformable spheres in terms of material properties and impact conditions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.365</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1613-6052</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2017-08, Vol.824, p.912-930
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1973733253
source Cambridge Journals Online
subjects Coefficients
Deformation
Deformation effects
Deformation mechanisms
Dynamics
Elastomers
Experiments
Formability
Free surfaces
Hydrodynamic pressure
Hydrodynamics
Image processing
Imaging techniques
Oscillations
Properties
Rigid-body dynamics
Shear modulus
Spheres
Studies
Velocity
Vibration
title Water entry of deformable spheres
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A00%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20entry%20of%20deformable%20spheres&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Hurd,%20Randy%20C.&rft.date=2017-08-10&rft.volume=824&rft.spage=912&rft.epage=930&rft.pages=912-930&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.365&rft_dat=%3Cproquest_cross%3E1973733253%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-83f51c08f55b078bd2e33385fd5356e28f56a8c990f97f9ca05b47df6759f3193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1973733253&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_365&rfr_iscdi=true