Loading…
The variation of flow and turbulence across the sediment–water interface
A basic framework characterising the interaction between aquatic flows and permeable sediment beds is presented here. Through the permeability Reynolds number ( $Re_{K}=\sqrt{K}u_{\ast }/\unicode[STIX]{x1D708}$ , where $K$ is the sediment permeability, $u_{\ast }$ is the shear velocity and $\unicode...
Saved in:
Published in: | Journal of fluid mechanics 2017-08, Vol.824, p.413-437 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-88c749aa9355e2e6c946c79d20948c529a1654d6d72616020bbd2dc13df31173 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-88c749aa9355e2e6c946c79d20948c529a1654d6d72616020bbd2dc13df31173 |
container_end_page | 437 |
container_issue | |
container_start_page | 413 |
container_title | Journal of fluid mechanics |
container_volume | 824 |
creator | Voermans, J. J. Ghisalberti, M. Ivey, G. N. |
description | A basic framework characterising the interaction between aquatic flows and permeable sediment beds is presented here. Through the permeability Reynolds number (
$Re_{K}=\sqrt{K}u_{\ast }/\unicode[STIX]{x1D708}$
, where
$K$
is the sediment permeability,
$u_{\ast }$
is the shear velocity and
$\unicode[STIX]{x1D708}$
is the fluid viscosity), the framework unifies two classical flow typologies, namely impermeable boundary layer flows (
$Re_{K}\ll 1$
) and highly permeable canopy flows (
$Re_{K}\gg 1$
). Within this range, the sediment–water interface (SWI) is identified as a transitional region, with
$Re_{K}$
in aquatic systems typically
$O(0.001{-}10)$
. As the sediments obstruct conventional measurement techniques, experimental observations of interfacial hydrodynamics remain extremely rare. The use of refractive index matching here allows measurement of the mean and turbulent flow across the SWI and thus direct validation of the proposed framework. This study demonstrates a strong relationship between the structure of the mean and turbulent flow at the SWI and
$Re_{K}$
. Hydrodynamic characteristics, such as the interfacial turbulent shear stress, velocity, turbulence intensities and turbulence anisotropy tend towards those observed in flows over impermeable boundaries as
$Re_{K}\rightarrow 0$
and towards those seen in flows over highly permeable boundaries as
$Re_{K}\rightarrow \infty$
. A value of
$Re_{K}\approx 1{-}2$
is seen to be an important threshold, above which the turbulent stress starts to dominate the fluid shear stress at the SWI, the penetration depths of turbulence and the mean flow into the sediment bed are comparable and similarity relationships developed for highly permeable boundaries hold. These results are used to provide a new perspective on the development of interfacial transport models at the SWI. |
doi_str_mv | 10.1017/jfm.2017.345 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973733369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_345</cupid><sourcerecordid>1973733369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-88c749aa9355e2e6c946c79d20948c529a1654d6d72616020bbd2dc13df31173</originalsourceid><addsrcrecordid>eNptkL1OwzAQxy0EEqWw8QCWWEnw2Y5dj6jiU5VYuluOPyBVkxQ7oWLjHXhDngSXMjCw3N3wu_-dfgidAymBgLxahbakeSgZrw7QBLhQhRS8OkQTQigtACg5RicprQgBRpScoMfli8dvJjZmaPoO9wGHdb_FpnN4GGM9rn1nPTY29inhIbPJu6b13fD18bk1g4-46XINxvpTdBTMOvmz3z5Fy9ub5fy-WDzdPcyvF4XlRAzFbGYlV8YoVlWeemEVF1YqR4niM1tRZUBU3AknqQBBKKlrR50F5gIDkGyKLvaxm9i_jj4NetWPscsXNSjJJGNMqExd7qmfz6MPehOb1sR3DUTvZOksS-9k6Swr4-Uvbto6Nu7Z_0n9b-EbUPxsIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973733369</pqid></control><display><type>article</type><title>The variation of flow and turbulence across the sediment–water interface</title><source>Cambridge University Press</source><creator>Voermans, J. J. ; Ghisalberti, M. ; Ivey, G. N.</creator><creatorcontrib>Voermans, J. J. ; Ghisalberti, M. ; Ivey, G. N.</creatorcontrib><description>A basic framework characterising the interaction between aquatic flows and permeable sediment beds is presented here. Through the permeability Reynolds number (
$Re_{K}=\sqrt{K}u_{\ast }/\unicode[STIX]{x1D708}$
, where
$K$
is the sediment permeability,
$u_{\ast }$
is the shear velocity and
$\unicode[STIX]{x1D708}$
is the fluid viscosity), the framework unifies two classical flow typologies, namely impermeable boundary layer flows (
$Re_{K}\ll 1$
) and highly permeable canopy flows (
$Re_{K}\gg 1$
). Within this range, the sediment–water interface (SWI) is identified as a transitional region, with
$Re_{K}$
in aquatic systems typically
$O(0.001{-}10)$
. As the sediments obstruct conventional measurement techniques, experimental observations of interfacial hydrodynamics remain extremely rare. The use of refractive index matching here allows measurement of the mean and turbulent flow across the SWI and thus direct validation of the proposed framework. This study demonstrates a strong relationship between the structure of the mean and turbulent flow at the SWI and
$Re_{K}$
. Hydrodynamic characteristics, such as the interfacial turbulent shear stress, velocity, turbulence intensities and turbulence anisotropy tend towards those observed in flows over impermeable boundaries as
$Re_{K}\rightarrow 0$
and towards those seen in flows over highly permeable boundaries as
$Re_{K}\rightarrow \infty$
. A value of
$Re_{K}\approx 1{-}2$
is seen to be an important threshold, above which the turbulent stress starts to dominate the fluid shear stress at the SWI, the penetration depths of turbulence and the mean flow into the sediment bed are comparable and similarity relationships developed for highly permeable boundaries hold. These results are used to provide a new perspective on the development of interfacial transport models at the SWI.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.345</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Anisotropy ; Aquatic ecosystems ; Aquatic environment ; Boundaries ; Boundary conditions ; Boundary layers ; Computational fluid dynamics ; Fluid flow ; Fluids ; Frameworks ; Hydrodynamics ; Hypoxia ; Measurement ; Mechanical stimuli ; Mud-water interfaces ; Permeability ; Plant cover ; Refractive index ; Refractivity ; Reynolds number ; Sediment ; Sediment-water interface ; Sediments ; Shear stress ; Topography ; Turbulence ; Turbulent flow ; Velocity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2017-08, Vol.824, p.413-437</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-88c749aa9355e2e6c946c79d20948c529a1654d6d72616020bbd2dc13df31173</citedby><cites>FETCH-LOGICAL-c406t-88c749aa9355e2e6c946c79d20948c529a1654d6d72616020bbd2dc13df31173</cites><orcidid>0000-0002-2963-3763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017003457/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Voermans, J. J.</creatorcontrib><creatorcontrib>Ghisalberti, M.</creatorcontrib><creatorcontrib>Ivey, G. N.</creatorcontrib><title>The variation of flow and turbulence across the sediment–water interface</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A basic framework characterising the interaction between aquatic flows and permeable sediment beds is presented here. Through the permeability Reynolds number (
$Re_{K}=\sqrt{K}u_{\ast }/\unicode[STIX]{x1D708}$
, where
$K$
is the sediment permeability,
$u_{\ast }$
is the shear velocity and
$\unicode[STIX]{x1D708}$
is the fluid viscosity), the framework unifies two classical flow typologies, namely impermeable boundary layer flows (
$Re_{K}\ll 1$
) and highly permeable canopy flows (
$Re_{K}\gg 1$
). Within this range, the sediment–water interface (SWI) is identified as a transitional region, with
$Re_{K}$
in aquatic systems typically
$O(0.001{-}10)$
. As the sediments obstruct conventional measurement techniques, experimental observations of interfacial hydrodynamics remain extremely rare. The use of refractive index matching here allows measurement of the mean and turbulent flow across the SWI and thus direct validation of the proposed framework. This study demonstrates a strong relationship between the structure of the mean and turbulent flow at the SWI and
$Re_{K}$
. Hydrodynamic characteristics, such as the interfacial turbulent shear stress, velocity, turbulence intensities and turbulence anisotropy tend towards those observed in flows over impermeable boundaries as
$Re_{K}\rightarrow 0$
and towards those seen in flows over highly permeable boundaries as
$Re_{K}\rightarrow \infty$
. A value of
$Re_{K}\approx 1{-}2$
is seen to be an important threshold, above which the turbulent stress starts to dominate the fluid shear stress at the SWI, the penetration depths of turbulence and the mean flow into the sediment bed are comparable and similarity relationships developed for highly permeable boundaries hold. These results are used to provide a new perspective on the development of interfacial transport models at the SWI.</description><subject>Anisotropy</subject><subject>Aquatic ecosystems</subject><subject>Aquatic environment</subject><subject>Boundaries</subject><subject>Boundary conditions</subject><subject>Boundary layers</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Frameworks</subject><subject>Hydrodynamics</subject><subject>Hypoxia</subject><subject>Measurement</subject><subject>Mechanical stimuli</subject><subject>Mud-water interfaces</subject><subject>Permeability</subject><subject>Plant cover</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Reynolds number</subject><subject>Sediment</subject><subject>Sediment-water interface</subject><subject>Sediments</subject><subject>Shear stress</subject><subject>Topography</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkL1OwzAQxy0EEqWw8QCWWEnw2Y5dj6jiU5VYuluOPyBVkxQ7oWLjHXhDngSXMjCw3N3wu_-dfgidAymBgLxahbakeSgZrw7QBLhQhRS8OkQTQigtACg5RicprQgBRpScoMfli8dvJjZmaPoO9wGHdb_FpnN4GGM9rn1nPTY29inhIbPJu6b13fD18bk1g4-46XINxvpTdBTMOvmz3z5Fy9ub5fy-WDzdPcyvF4XlRAzFbGYlV8YoVlWeemEVF1YqR4niM1tRZUBU3AknqQBBKKlrR50F5gIDkGyKLvaxm9i_jj4NetWPscsXNSjJJGNMqExd7qmfz6MPehOb1sR3DUTvZOksS-9k6Swr4-Uvbto6Nu7Z_0n9b-EbUPxsIg</recordid><startdate>20170810</startdate><enddate>20170810</enddate><creator>Voermans, J. J.</creator><creator>Ghisalberti, M.</creator><creator>Ivey, G. N.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-2963-3763</orcidid></search><sort><creationdate>20170810</creationdate><title>The variation of flow and turbulence across the sediment–water interface</title><author>Voermans, J. J. ; Ghisalberti, M. ; Ivey, G. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-88c749aa9355e2e6c946c79d20948c529a1654d6d72616020bbd2dc13df31173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Aquatic ecosystems</topic><topic>Aquatic environment</topic><topic>Boundaries</topic><topic>Boundary conditions</topic><topic>Boundary layers</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Frameworks</topic><topic>Hydrodynamics</topic><topic>Hypoxia</topic><topic>Measurement</topic><topic>Mechanical stimuli</topic><topic>Mud-water interfaces</topic><topic>Permeability</topic><topic>Plant cover</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Reynolds number</topic><topic>Sediment</topic><topic>Sediment-water interface</topic><topic>Sediments</topic><topic>Shear stress</topic><topic>Topography</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voermans, J. J.</creatorcontrib><creatorcontrib>Ghisalberti, M.</creatorcontrib><creatorcontrib>Ivey, G. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voermans, J. J.</au><au>Ghisalberti, M.</au><au>Ivey, G. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The variation of flow and turbulence across the sediment–water interface</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-08-10</date><risdate>2017</risdate><volume>824</volume><spage>413</spage><epage>437</epage><pages>413-437</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A basic framework characterising the interaction between aquatic flows and permeable sediment beds is presented here. Through the permeability Reynolds number (
$Re_{K}=\sqrt{K}u_{\ast }/\unicode[STIX]{x1D708}$
, where
$K$
is the sediment permeability,
$u_{\ast }$
is the shear velocity and
$\unicode[STIX]{x1D708}$
is the fluid viscosity), the framework unifies two classical flow typologies, namely impermeable boundary layer flows (
$Re_{K}\ll 1$
) and highly permeable canopy flows (
$Re_{K}\gg 1$
). Within this range, the sediment–water interface (SWI) is identified as a transitional region, with
$Re_{K}$
in aquatic systems typically
$O(0.001{-}10)$
. As the sediments obstruct conventional measurement techniques, experimental observations of interfacial hydrodynamics remain extremely rare. The use of refractive index matching here allows measurement of the mean and turbulent flow across the SWI and thus direct validation of the proposed framework. This study demonstrates a strong relationship between the structure of the mean and turbulent flow at the SWI and
$Re_{K}$
. Hydrodynamic characteristics, such as the interfacial turbulent shear stress, velocity, turbulence intensities and turbulence anisotropy tend towards those observed in flows over impermeable boundaries as
$Re_{K}\rightarrow 0$
and towards those seen in flows over highly permeable boundaries as
$Re_{K}\rightarrow \infty$
. A value of
$Re_{K}\approx 1{-}2$
is seen to be an important threshold, above which the turbulent stress starts to dominate the fluid shear stress at the SWI, the penetration depths of turbulence and the mean flow into the sediment bed are comparable and similarity relationships developed for highly permeable boundaries hold. These results are used to provide a new perspective on the development of interfacial transport models at the SWI.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.345</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-2963-3763</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2017-08, Vol.824, p.413-437 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_1973733369 |
source | Cambridge University Press |
subjects | Anisotropy Aquatic ecosystems Aquatic environment Boundaries Boundary conditions Boundary layers Computational fluid dynamics Fluid flow Fluids Frameworks Hydrodynamics Hypoxia Measurement Mechanical stimuli Mud-water interfaces Permeability Plant cover Refractive index Refractivity Reynolds number Sediment Sediment-water interface Sediments Shear stress Topography Turbulence Turbulent flow Velocity Viscosity |
title | The variation of flow and turbulence across the sediment–water interface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20variation%20of%20flow%20and%20turbulence%20across%20the%20sediment%E2%80%93water%20interface&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Voermans,%20J.%20J.&rft.date=2017-08-10&rft.volume=824&rft.spage=413&rft.epage=437&rft.pages=413-437&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.345&rft_dat=%3Cproquest_cross%3E1973733369%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-88c749aa9355e2e6c946c79d20948c529a1654d6d72616020bbd2dc13df31173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1973733369&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_345&rfr_iscdi=true |