Loading…

The variation of flow and turbulence across the sediment–water interface

A basic framework characterising the interaction between aquatic flows and permeable sediment beds is presented here. Through the permeability Reynolds number ( $Re_{K}=\sqrt{K}u_{\ast }/\unicode[STIX]{x1D708}$ , where $K$ is the sediment permeability, $u_{\ast }$ is the shear velocity and $\unicode...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2017-08, Vol.824, p.413-437
Main Authors: Voermans, J. J., Ghisalberti, M., Ivey, G. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-88c749aa9355e2e6c946c79d20948c529a1654d6d72616020bbd2dc13df31173
cites cdi_FETCH-LOGICAL-c406t-88c749aa9355e2e6c946c79d20948c529a1654d6d72616020bbd2dc13df31173
container_end_page 437
container_issue
container_start_page 413
container_title Journal of fluid mechanics
container_volume 824
creator Voermans, J. J.
Ghisalberti, M.
Ivey, G. N.
description A basic framework characterising the interaction between aquatic flows and permeable sediment beds is presented here. Through the permeability Reynolds number ( $Re_{K}=\sqrt{K}u_{\ast }/\unicode[STIX]{x1D708}$ , where $K$ is the sediment permeability, $u_{\ast }$ is the shear velocity and $\unicode[STIX]{x1D708}$ is the fluid viscosity), the framework unifies two classical flow typologies, namely impermeable boundary layer flows ( $Re_{K}\ll 1$ ) and highly permeable canopy flows ( $Re_{K}\gg 1$ ). Within this range, the sediment–water interface (SWI) is identified as a transitional region, with $Re_{K}$ in aquatic systems typically $O(0.001{-}10)$ . As the sediments obstruct conventional measurement techniques, experimental observations of interfacial hydrodynamics remain extremely rare. The use of refractive index matching here allows measurement of the mean and turbulent flow across the SWI and thus direct validation of the proposed framework. This study demonstrates a strong relationship between the structure of the mean and turbulent flow at the SWI and $Re_{K}$ . Hydrodynamic characteristics, such as the interfacial turbulent shear stress, velocity, turbulence intensities and turbulence anisotropy tend towards those observed in flows over impermeable boundaries as $Re_{K}\rightarrow 0$ and towards those seen in flows over highly permeable boundaries as $Re_{K}\rightarrow \infty$ . A value of $Re_{K}\approx 1{-}2$ is seen to be an important threshold, above which the turbulent stress starts to dominate the fluid shear stress at the SWI, the penetration depths of turbulence and the mean flow into the sediment bed are comparable and similarity relationships developed for highly permeable boundaries hold. These results are used to provide a new perspective on the development of interfacial transport models at the SWI.
doi_str_mv 10.1017/jfm.2017.345
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973733369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_345</cupid><sourcerecordid>1973733369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-88c749aa9355e2e6c946c79d20948c529a1654d6d72616020bbd2dc13df31173</originalsourceid><addsrcrecordid>eNptkL1OwzAQxy0EEqWw8QCWWEnw2Y5dj6jiU5VYuluOPyBVkxQ7oWLjHXhDngSXMjCw3N3wu_-dfgidAymBgLxahbakeSgZrw7QBLhQhRS8OkQTQigtACg5RicprQgBRpScoMfli8dvJjZmaPoO9wGHdb_FpnN4GGM9rn1nPTY29inhIbPJu6b13fD18bk1g4-46XINxvpTdBTMOvmz3z5Fy9ub5fy-WDzdPcyvF4XlRAzFbGYlV8YoVlWeemEVF1YqR4niM1tRZUBU3AknqQBBKKlrR50F5gIDkGyKLvaxm9i_jj4NetWPscsXNSjJJGNMqExd7qmfz6MPehOb1sR3DUTvZOksS-9k6Swr4-Uvbto6Nu7Z_0n9b-EbUPxsIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973733369</pqid></control><display><type>article</type><title>The variation of flow and turbulence across the sediment–water interface</title><source>Cambridge University Press</source><creator>Voermans, J. J. ; Ghisalberti, M. ; Ivey, G. N.</creator><creatorcontrib>Voermans, J. J. ; Ghisalberti, M. ; Ivey, G. N.</creatorcontrib><description>A basic framework characterising the interaction between aquatic flows and permeable sediment beds is presented here. Through the permeability Reynolds number ( $Re_{K}=\sqrt{K}u_{\ast }/\unicode[STIX]{x1D708}$ , where $K$ is the sediment permeability, $u_{\ast }$ is the shear velocity and $\unicode[STIX]{x1D708}$ is the fluid viscosity), the framework unifies two classical flow typologies, namely impermeable boundary layer flows ( $Re_{K}\ll 1$ ) and highly permeable canopy flows ( $Re_{K}\gg 1$ ). Within this range, the sediment–water interface (SWI) is identified as a transitional region, with $Re_{K}$ in aquatic systems typically $O(0.001{-}10)$ . As the sediments obstruct conventional measurement techniques, experimental observations of interfacial hydrodynamics remain extremely rare. The use of refractive index matching here allows measurement of the mean and turbulent flow across the SWI and thus direct validation of the proposed framework. This study demonstrates a strong relationship between the structure of the mean and turbulent flow at the SWI and $Re_{K}$ . Hydrodynamic characteristics, such as the interfacial turbulent shear stress, velocity, turbulence intensities and turbulence anisotropy tend towards those observed in flows over impermeable boundaries as $Re_{K}\rightarrow 0$ and towards those seen in flows over highly permeable boundaries as $Re_{K}\rightarrow \infty$ . A value of $Re_{K}\approx 1{-}2$ is seen to be an important threshold, above which the turbulent stress starts to dominate the fluid shear stress at the SWI, the penetration depths of turbulence and the mean flow into the sediment bed are comparable and similarity relationships developed for highly permeable boundaries hold. These results are used to provide a new perspective on the development of interfacial transport models at the SWI.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.345</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Anisotropy ; Aquatic ecosystems ; Aquatic environment ; Boundaries ; Boundary conditions ; Boundary layers ; Computational fluid dynamics ; Fluid flow ; Fluids ; Frameworks ; Hydrodynamics ; Hypoxia ; Measurement ; Mechanical stimuli ; Mud-water interfaces ; Permeability ; Plant cover ; Refractive index ; Refractivity ; Reynolds number ; Sediment ; Sediment-water interface ; Sediments ; Shear stress ; Topography ; Turbulence ; Turbulent flow ; Velocity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2017-08, Vol.824, p.413-437</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-88c749aa9355e2e6c946c79d20948c529a1654d6d72616020bbd2dc13df31173</citedby><cites>FETCH-LOGICAL-c406t-88c749aa9355e2e6c946c79d20948c529a1654d6d72616020bbd2dc13df31173</cites><orcidid>0000-0002-2963-3763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017003457/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Voermans, J. J.</creatorcontrib><creatorcontrib>Ghisalberti, M.</creatorcontrib><creatorcontrib>Ivey, G. N.</creatorcontrib><title>The variation of flow and turbulence across the sediment–water interface</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A basic framework characterising the interaction between aquatic flows and permeable sediment beds is presented here. Through the permeability Reynolds number ( $Re_{K}=\sqrt{K}u_{\ast }/\unicode[STIX]{x1D708}$ , where $K$ is the sediment permeability, $u_{\ast }$ is the shear velocity and $\unicode[STIX]{x1D708}$ is the fluid viscosity), the framework unifies two classical flow typologies, namely impermeable boundary layer flows ( $Re_{K}\ll 1$ ) and highly permeable canopy flows ( $Re_{K}\gg 1$ ). Within this range, the sediment–water interface (SWI) is identified as a transitional region, with $Re_{K}$ in aquatic systems typically $O(0.001{-}10)$ . As the sediments obstruct conventional measurement techniques, experimental observations of interfacial hydrodynamics remain extremely rare. The use of refractive index matching here allows measurement of the mean and turbulent flow across the SWI and thus direct validation of the proposed framework. This study demonstrates a strong relationship between the structure of the mean and turbulent flow at the SWI and $Re_{K}$ . Hydrodynamic characteristics, such as the interfacial turbulent shear stress, velocity, turbulence intensities and turbulence anisotropy tend towards those observed in flows over impermeable boundaries as $Re_{K}\rightarrow 0$ and towards those seen in flows over highly permeable boundaries as $Re_{K}\rightarrow \infty$ . A value of $Re_{K}\approx 1{-}2$ is seen to be an important threshold, above which the turbulent stress starts to dominate the fluid shear stress at the SWI, the penetration depths of turbulence and the mean flow into the sediment bed are comparable and similarity relationships developed for highly permeable boundaries hold. These results are used to provide a new perspective on the development of interfacial transport models at the SWI.</description><subject>Anisotropy</subject><subject>Aquatic ecosystems</subject><subject>Aquatic environment</subject><subject>Boundaries</subject><subject>Boundary conditions</subject><subject>Boundary layers</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Frameworks</subject><subject>Hydrodynamics</subject><subject>Hypoxia</subject><subject>Measurement</subject><subject>Mechanical stimuli</subject><subject>Mud-water interfaces</subject><subject>Permeability</subject><subject>Plant cover</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Reynolds number</subject><subject>Sediment</subject><subject>Sediment-water interface</subject><subject>Sediments</subject><subject>Shear stress</subject><subject>Topography</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkL1OwzAQxy0EEqWw8QCWWEnw2Y5dj6jiU5VYuluOPyBVkxQ7oWLjHXhDngSXMjCw3N3wu_-dfgidAymBgLxahbakeSgZrw7QBLhQhRS8OkQTQigtACg5RicprQgBRpScoMfli8dvJjZmaPoO9wGHdb_FpnN4GGM9rn1nPTY29inhIbPJu6b13fD18bk1g4-46XINxvpTdBTMOvmz3z5Fy9ub5fy-WDzdPcyvF4XlRAzFbGYlV8YoVlWeemEVF1YqR4niM1tRZUBU3AknqQBBKKlrR50F5gIDkGyKLvaxm9i_jj4NetWPscsXNSjJJGNMqExd7qmfz6MPehOb1sR3DUTvZOksS-9k6Swr4-Uvbto6Nu7Z_0n9b-EbUPxsIg</recordid><startdate>20170810</startdate><enddate>20170810</enddate><creator>Voermans, J. J.</creator><creator>Ghisalberti, M.</creator><creator>Ivey, G. N.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-2963-3763</orcidid></search><sort><creationdate>20170810</creationdate><title>The variation of flow and turbulence across the sediment–water interface</title><author>Voermans, J. J. ; Ghisalberti, M. ; Ivey, G. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-88c749aa9355e2e6c946c79d20948c529a1654d6d72616020bbd2dc13df31173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Aquatic ecosystems</topic><topic>Aquatic environment</topic><topic>Boundaries</topic><topic>Boundary conditions</topic><topic>Boundary layers</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Frameworks</topic><topic>Hydrodynamics</topic><topic>Hypoxia</topic><topic>Measurement</topic><topic>Mechanical stimuli</topic><topic>Mud-water interfaces</topic><topic>Permeability</topic><topic>Plant cover</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Reynolds number</topic><topic>Sediment</topic><topic>Sediment-water interface</topic><topic>Sediments</topic><topic>Shear stress</topic><topic>Topography</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voermans, J. J.</creatorcontrib><creatorcontrib>Ghisalberti, M.</creatorcontrib><creatorcontrib>Ivey, G. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voermans, J. J.</au><au>Ghisalberti, M.</au><au>Ivey, G. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The variation of flow and turbulence across the sediment–water interface</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-08-10</date><risdate>2017</risdate><volume>824</volume><spage>413</spage><epage>437</epage><pages>413-437</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A basic framework characterising the interaction between aquatic flows and permeable sediment beds is presented here. Through the permeability Reynolds number ( $Re_{K}=\sqrt{K}u_{\ast }/\unicode[STIX]{x1D708}$ , where $K$ is the sediment permeability, $u_{\ast }$ is the shear velocity and $\unicode[STIX]{x1D708}$ is the fluid viscosity), the framework unifies two classical flow typologies, namely impermeable boundary layer flows ( $Re_{K}\ll 1$ ) and highly permeable canopy flows ( $Re_{K}\gg 1$ ). Within this range, the sediment–water interface (SWI) is identified as a transitional region, with $Re_{K}$ in aquatic systems typically $O(0.001{-}10)$ . As the sediments obstruct conventional measurement techniques, experimental observations of interfacial hydrodynamics remain extremely rare. The use of refractive index matching here allows measurement of the mean and turbulent flow across the SWI and thus direct validation of the proposed framework. This study demonstrates a strong relationship between the structure of the mean and turbulent flow at the SWI and $Re_{K}$ . Hydrodynamic characteristics, such as the interfacial turbulent shear stress, velocity, turbulence intensities and turbulence anisotropy tend towards those observed in flows over impermeable boundaries as $Re_{K}\rightarrow 0$ and towards those seen in flows over highly permeable boundaries as $Re_{K}\rightarrow \infty$ . A value of $Re_{K}\approx 1{-}2$ is seen to be an important threshold, above which the turbulent stress starts to dominate the fluid shear stress at the SWI, the penetration depths of turbulence and the mean flow into the sediment bed are comparable and similarity relationships developed for highly permeable boundaries hold. These results are used to provide a new perspective on the development of interfacial transport models at the SWI.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.345</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-2963-3763</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2017-08, Vol.824, p.413-437
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1973733369
source Cambridge University Press
subjects Anisotropy
Aquatic ecosystems
Aquatic environment
Boundaries
Boundary conditions
Boundary layers
Computational fluid dynamics
Fluid flow
Fluids
Frameworks
Hydrodynamics
Hypoxia
Measurement
Mechanical stimuli
Mud-water interfaces
Permeability
Plant cover
Refractive index
Refractivity
Reynolds number
Sediment
Sediment-water interface
Sediments
Shear stress
Topography
Turbulence
Turbulent flow
Velocity
Viscosity
title The variation of flow and turbulence across the sediment–water interface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20variation%20of%20flow%20and%20turbulence%20across%20the%20sediment%E2%80%93water%20interface&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Voermans,%20J.%20J.&rft.date=2017-08-10&rft.volume=824&rft.spage=413&rft.epage=437&rft.pages=413-437&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.345&rft_dat=%3Cproquest_cross%3E1973733369%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-88c749aa9355e2e6c946c79d20948c529a1654d6d72616020bbd2dc13df31173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1973733369&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_345&rfr_iscdi=true