Loading…

A quantitative assessment of viscous asymmetric vortex pair interactions

The interactions of two like-signed vortices in viscous fluid are investigated using two-dimensional numerical simulations performed across a range of vortex strength ratios, $\unicode[STIX]{x1D6EC}=\unicode[STIX]{x1D6E4}_{1}/\unicode[STIX]{x1D6E4}_{2}\leqslant 1$ , corresponding to vortices of circ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2017-10, Vol.829, p.1-30
Main Authors: Folz, Patrick J. R., Nomura, Keiko K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-27118d5046a3d2362d9fc32699fe6ec0abb10e9e085dbf0fc820493ecc0f614b3
cites cdi_FETCH-LOGICAL-c368t-27118d5046a3d2362d9fc32699fe6ec0abb10e9e085dbf0fc820493ecc0f614b3
container_end_page 30
container_issue
container_start_page 1
container_title Journal of fluid mechanics
container_volume 829
creator Folz, Patrick J. R.
Nomura, Keiko K.
description The interactions of two like-signed vortices in viscous fluid are investigated using two-dimensional numerical simulations performed across a range of vortex strength ratios, $\unicode[STIX]{x1D6EC}=\unicode[STIX]{x1D6E4}_{1}/\unicode[STIX]{x1D6E4}_{2}\leqslant 1$ , corresponding to vortices of circulation, $\unicode[STIX]{x1D6E4}_{i}$ , with differing initial size and/or peak vorticity. In all cases, the vortices evolve by viscous diffusion before undergoing a primary convective interaction, which ultimately results in a single vortex. The post-interaction vortex is quantitatively evaluated in terms of an enhancement factor, $\unicode[STIX]{x1D700}=\unicode[STIX]{x1D6E4}_{end}/\unicode[STIX]{x1D6E4}_{2,start}$ , which compares its circulation, $\unicode[STIX]{x1D6E4}_{end}$ , to that of the stronger starting vortex, $\unicode[STIX]{x1D6E4}_{2,start}$ . Results are effectively characterized by a mutuality parameter, $MP\equiv (S/\unicode[STIX]{x1D714})_{1}/(S/\unicode[STIX]{x1D714})_{2}$ , where the ratio of induced strain rate, $S$ , to peak vorticity, $\unicode[STIX]{x1D714}$ , for each vortex, $(S/\unicode[STIX]{x1D714})_{i}$ , is found to have a critical value, $(S/\unicode[STIX]{x1D714})_{cr}\approx 0.135$ , above which core detrainment occurs. If $MP$ is sufficiently close to unity, both vortices detrain and a two-way mutual entrainment process leads to $\unicode[STIX]{x1D700}>1$ , i.e. merger. In asymmetric interactions and mergers, generally one vortex dominates; the weak/no/strong vortex winner regimes correspond to $MP1$ , respectively. As $MP$ deviates from unity, $\unicode[STIX]{x1D700}$ decreases until a critical value, $MP_{cr}$ is reached, beyond which there is only a one-way interaction; one vortex detrains and is destroyed by the other, which dominates and survives. There is no entrainment and $\unicode[STIX]{x1D700}\sim 1$ , i.e. only a straining out occurs. Although $(S/\unicode[STIX]{x1D714})_{cr}$ appears to be independent of Reynolds number, $MP_{cr}$ shows a dependence. Comparisons are made with available experimental data from Meunier (2001, PhD thesis, Université de Provence-Aix-Marseille I).
doi_str_mv 10.1017/jfm.2017.527
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973759448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_527</cupid><sourcerecordid>1973759448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-27118d5046a3d2362d9fc32699fe6ec0abb10e9e085dbf0fc820493ecc0f614b3</originalsourceid><addsrcrecordid>eNptkEFLwzAUx4MoOKc3P0DBq60vSZs2xzHUCQMveg5p-iIZtt2SdLhvb8Z28ODpPR6____Bj5B7CgUFWj9tbF-wtBQVqy_IjJZC5rUoq0syA2Asp5TBNbkJYQNAOch6RlaLbDfpIbqoo9tjpkPAEHocYjbabO-CGaeQroe-x-idyfajj_iTbbXzmRsiem2iG4dwS66s_g54d55z8vny_LFc5ev317flYp0bLpqYs5rSpqugFJp3jAvWSWs4E1JaFGhAty0FlAhN1bUWrGkYlJKjMWAFLVs-Jw-n3q0fdxOGqDbj5If0UlFZ87qSZdkk6vFEGT-G4NGqrXe99gdFQR1dqeRKHV2p5CrhxRnXfetd94V_Wv8L_AJflGyr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973759448</pqid></control><display><type>article</type><title>A quantitative assessment of viscous asymmetric vortex pair interactions</title><source>Cambridge University Press</source><creator>Folz, Patrick J. R. ; Nomura, Keiko K.</creator><creatorcontrib>Folz, Patrick J. R. ; Nomura, Keiko K.</creatorcontrib><description>The interactions of two like-signed vortices in viscous fluid are investigated using two-dimensional numerical simulations performed across a range of vortex strength ratios, $\unicode[STIX]{x1D6EC}=\unicode[STIX]{x1D6E4}_{1}/\unicode[STIX]{x1D6E4}_{2}\leqslant 1$ , corresponding to vortices of circulation, $\unicode[STIX]{x1D6E4}_{i}$ , with differing initial size and/or peak vorticity. In all cases, the vortices evolve by viscous diffusion before undergoing a primary convective interaction, which ultimately results in a single vortex. The post-interaction vortex is quantitatively evaluated in terms of an enhancement factor, $\unicode[STIX]{x1D700}=\unicode[STIX]{x1D6E4}_{end}/\unicode[STIX]{x1D6E4}_{2,start}$ , which compares its circulation, $\unicode[STIX]{x1D6E4}_{end}$ , to that of the stronger starting vortex, $\unicode[STIX]{x1D6E4}_{2,start}$ . Results are effectively characterized by a mutuality parameter, $MP\equiv (S/\unicode[STIX]{x1D714})_{1}/(S/\unicode[STIX]{x1D714})_{2}$ , where the ratio of induced strain rate, $S$ , to peak vorticity, $\unicode[STIX]{x1D714}$ , for each vortex, $(S/\unicode[STIX]{x1D714})_{i}$ , is found to have a critical value, $(S/\unicode[STIX]{x1D714})_{cr}\approx 0.135$ , above which core detrainment occurs. If $MP$ is sufficiently close to unity, both vortices detrain and a two-way mutual entrainment process leads to $\unicode[STIX]{x1D700}&gt;1$ , i.e. merger. In asymmetric interactions and mergers, generally one vortex dominates; the weak/no/strong vortex winner regimes correspond to $MP&lt;,=,&gt;1$ , respectively. As $MP$ deviates from unity, $\unicode[STIX]{x1D700}$ decreases until a critical value, $MP_{cr}$ is reached, beyond which there is only a one-way interaction; one vortex detrains and is destroyed by the other, which dominates and survives. There is no entrainment and $\unicode[STIX]{x1D700}\sim 1$ , i.e. only a straining out occurs. Although $(S/\unicode[STIX]{x1D714})_{cr}$ appears to be independent of Reynolds number, $MP_{cr}$ shows a dependence. Comparisons are made with available experimental data from Meunier (2001, PhD thesis, Université de Provence-Aix-Marseille I).</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.527</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Computational fluid dynamics ; Computer simulation ; Dye dispersion ; Entrainment ; Fluid flow ; Fluid mechanics ; Interactions ; Ratios ; Reynolds number ; Strain rate ; Unity ; Viscous fluids ; Vortices ; Vorticity</subject><ispartof>Journal of fluid mechanics, 2017-10, Vol.829, p.1-30</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-27118d5046a3d2362d9fc32699fe6ec0abb10e9e085dbf0fc820493ecc0f614b3</citedby><cites>FETCH-LOGICAL-c368t-27118d5046a3d2362d9fc32699fe6ec0abb10e9e085dbf0fc820493ecc0f614b3</cites><orcidid>0000-0001-8441-411X ; 0000-0003-3872-2722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017005274/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Folz, Patrick J. R.</creatorcontrib><creatorcontrib>Nomura, Keiko K.</creatorcontrib><title>A quantitative assessment of viscous asymmetric vortex pair interactions</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The interactions of two like-signed vortices in viscous fluid are investigated using two-dimensional numerical simulations performed across a range of vortex strength ratios, $\unicode[STIX]{x1D6EC}=\unicode[STIX]{x1D6E4}_{1}/\unicode[STIX]{x1D6E4}_{2}\leqslant 1$ , corresponding to vortices of circulation, $\unicode[STIX]{x1D6E4}_{i}$ , with differing initial size and/or peak vorticity. In all cases, the vortices evolve by viscous diffusion before undergoing a primary convective interaction, which ultimately results in a single vortex. The post-interaction vortex is quantitatively evaluated in terms of an enhancement factor, $\unicode[STIX]{x1D700}=\unicode[STIX]{x1D6E4}_{end}/\unicode[STIX]{x1D6E4}_{2,start}$ , which compares its circulation, $\unicode[STIX]{x1D6E4}_{end}$ , to that of the stronger starting vortex, $\unicode[STIX]{x1D6E4}_{2,start}$ . Results are effectively characterized by a mutuality parameter, $MP\equiv (S/\unicode[STIX]{x1D714})_{1}/(S/\unicode[STIX]{x1D714})_{2}$ , where the ratio of induced strain rate, $S$ , to peak vorticity, $\unicode[STIX]{x1D714}$ , for each vortex, $(S/\unicode[STIX]{x1D714})_{i}$ , is found to have a critical value, $(S/\unicode[STIX]{x1D714})_{cr}\approx 0.135$ , above which core detrainment occurs. If $MP$ is sufficiently close to unity, both vortices detrain and a two-way mutual entrainment process leads to $\unicode[STIX]{x1D700}&gt;1$ , i.e. merger. In asymmetric interactions and mergers, generally one vortex dominates; the weak/no/strong vortex winner regimes correspond to $MP&lt;,=,&gt;1$ , respectively. As $MP$ deviates from unity, $\unicode[STIX]{x1D700}$ decreases until a critical value, $MP_{cr}$ is reached, beyond which there is only a one-way interaction; one vortex detrains and is destroyed by the other, which dominates and survives. There is no entrainment and $\unicode[STIX]{x1D700}\sim 1$ , i.e. only a straining out occurs. Although $(S/\unicode[STIX]{x1D714})_{cr}$ appears to be independent of Reynolds number, $MP_{cr}$ shows a dependence. Comparisons are made with available experimental data from Meunier (2001, PhD thesis, Université de Provence-Aix-Marseille I).</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Dye dispersion</subject><subject>Entrainment</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Interactions</subject><subject>Ratios</subject><subject>Reynolds number</subject><subject>Strain rate</subject><subject>Unity</subject><subject>Viscous fluids</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkEFLwzAUx4MoOKc3P0DBq60vSZs2xzHUCQMveg5p-iIZtt2SdLhvb8Z28ODpPR6____Bj5B7CgUFWj9tbF-wtBQVqy_IjJZC5rUoq0syA2Asp5TBNbkJYQNAOch6RlaLbDfpIbqoo9tjpkPAEHocYjbabO-CGaeQroe-x-idyfajj_iTbbXzmRsiem2iG4dwS66s_g54d55z8vny_LFc5ev317flYp0bLpqYs5rSpqugFJp3jAvWSWs4E1JaFGhAty0FlAhN1bUWrGkYlJKjMWAFLVs-Jw-n3q0fdxOGqDbj5If0UlFZ87qSZdkk6vFEGT-G4NGqrXe99gdFQR1dqeRKHV2p5CrhxRnXfetd94V_Wv8L_AJflGyr</recordid><startdate>20171025</startdate><enddate>20171025</enddate><creator>Folz, Patrick J. R.</creator><creator>Nomura, Keiko K.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-8441-411X</orcidid><orcidid>https://orcid.org/0000-0003-3872-2722</orcidid></search><sort><creationdate>20171025</creationdate><title>A quantitative assessment of viscous asymmetric vortex pair interactions</title><author>Folz, Patrick J. R. ; Nomura, Keiko K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-27118d5046a3d2362d9fc32699fe6ec0abb10e9e085dbf0fc820493ecc0f614b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Dye dispersion</topic><topic>Entrainment</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Interactions</topic><topic>Ratios</topic><topic>Reynolds number</topic><topic>Strain rate</topic><topic>Unity</topic><topic>Viscous fluids</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Folz, Patrick J. R.</creatorcontrib><creatorcontrib>Nomura, Keiko K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Folz, Patrick J. R.</au><au>Nomura, Keiko K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quantitative assessment of viscous asymmetric vortex pair interactions</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-10-25</date><risdate>2017</risdate><volume>829</volume><spage>1</spage><epage>30</epage><pages>1-30</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The interactions of two like-signed vortices in viscous fluid are investigated using two-dimensional numerical simulations performed across a range of vortex strength ratios, $\unicode[STIX]{x1D6EC}=\unicode[STIX]{x1D6E4}_{1}/\unicode[STIX]{x1D6E4}_{2}\leqslant 1$ , corresponding to vortices of circulation, $\unicode[STIX]{x1D6E4}_{i}$ , with differing initial size and/or peak vorticity. In all cases, the vortices evolve by viscous diffusion before undergoing a primary convective interaction, which ultimately results in a single vortex. The post-interaction vortex is quantitatively evaluated in terms of an enhancement factor, $\unicode[STIX]{x1D700}=\unicode[STIX]{x1D6E4}_{end}/\unicode[STIX]{x1D6E4}_{2,start}$ , which compares its circulation, $\unicode[STIX]{x1D6E4}_{end}$ , to that of the stronger starting vortex, $\unicode[STIX]{x1D6E4}_{2,start}$ . Results are effectively characterized by a mutuality parameter, $MP\equiv (S/\unicode[STIX]{x1D714})_{1}/(S/\unicode[STIX]{x1D714})_{2}$ , where the ratio of induced strain rate, $S$ , to peak vorticity, $\unicode[STIX]{x1D714}$ , for each vortex, $(S/\unicode[STIX]{x1D714})_{i}$ , is found to have a critical value, $(S/\unicode[STIX]{x1D714})_{cr}\approx 0.135$ , above which core detrainment occurs. If $MP$ is sufficiently close to unity, both vortices detrain and a two-way mutual entrainment process leads to $\unicode[STIX]{x1D700}&gt;1$ , i.e. merger. In asymmetric interactions and mergers, generally one vortex dominates; the weak/no/strong vortex winner regimes correspond to $MP&lt;,=,&gt;1$ , respectively. As $MP$ deviates from unity, $\unicode[STIX]{x1D700}$ decreases until a critical value, $MP_{cr}$ is reached, beyond which there is only a one-way interaction; one vortex detrains and is destroyed by the other, which dominates and survives. There is no entrainment and $\unicode[STIX]{x1D700}\sim 1$ , i.e. only a straining out occurs. Although $(S/\unicode[STIX]{x1D714})_{cr}$ appears to be independent of Reynolds number, $MP_{cr}$ shows a dependence. Comparisons are made with available experimental data from Meunier (2001, PhD thesis, Université de Provence-Aix-Marseille I).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.527</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-8441-411X</orcidid><orcidid>https://orcid.org/0000-0003-3872-2722</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2017-10, Vol.829, p.1-30
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1973759448
source Cambridge University Press
subjects Computational fluid dynamics
Computer simulation
Dye dispersion
Entrainment
Fluid flow
Fluid mechanics
Interactions
Ratios
Reynolds number
Strain rate
Unity
Viscous fluids
Vortices
Vorticity
title A quantitative assessment of viscous asymmetric vortex pair interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quantitative%20assessment%20of%20viscous%20asymmetric%20vortex%20pair%20interactions&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Folz,%20Patrick%20J.%20R.&rft.date=2017-10-25&rft.volume=829&rft.spage=1&rft.epage=30&rft.pages=1-30&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.527&rft_dat=%3Cproquest_cross%3E1973759448%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-27118d5046a3d2362d9fc32699fe6ec0abb10e9e085dbf0fc820493ecc0f614b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1973759448&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_527&rfr_iscdi=true