Loading…

High-frequency wavepackets in turbulent jets

Wavepackets obtained as solutions of the flow equations linearised around the mean flow have been shown in recent work to yield good agreement, in terms of amplitude and phase, with those educed from turbulent jets. Compelling agreement has been demonstrated, for the axisymmetric and first helical m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2017-11, Vol.830, Article R2
Main Authors: Sasaki, Kenzo, Cavalieri, André V. G., Jordan, Peter, Schmidt, Oliver T., Colonius, Tim, Brès, Guillaume A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wavepackets obtained as solutions of the flow equations linearised around the mean flow have been shown in recent work to yield good agreement, in terms of amplitude and phase, with those educed from turbulent jets. Compelling agreement has been demonstrated, for the axisymmetric and first helical mode, up to Strouhal numbers close to unity. We here extend the range of validity of wavepacket models to Strouhal number $St=4.0$ and azimuthal wavenumber $m=4$ by comparing solutions of the parabolised stability equations with a well-validated large-eddy simulation of a Mach 0.9 turbulent jet. The results show that the near-nozzle dynamics can be correctly described by the homogeneous linear model, the initial growth rates being accurately predicted for the entire range of frequencies and azimuthal wavenumbers considered. Similarly to the lower-frequency wavepackets reported prior to this work, the high-frequency linear waves deviate from the data downstream of their stabilisation locations, which move progressively upstream as the frequency increases.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2017.659