Loading…

An Adaptive Cartesian Mesh Based Method to Simulate Turbulent Flows of Multiple Rotating Surfaces

An efficient Cartesian cut-cell/level-set method based on a multiple grid approach to simulate turbulent turbomachinery flows is presented. The finite-volume approach in an unstructured hierarchical Cartesian setup with a sharp representation of the complex moving boundaries embedded into the comput...

Full description

Saved in:
Bibliographic Details
Published in:Flow, turbulence and combustion turbulence and combustion, 2018, Vol.100 (1), p.19-38
Main Authors: Pogorelov, Alexej, Schneiders, Lennart, Meinke, Matthias, Schröder, Wolfgang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-33197c038d1f4286d4ee71bd5c249c9ab4796ea1cbe652d8042e5623bddb1d9d3
cites cdi_FETCH-LOGICAL-c316t-33197c038d1f4286d4ee71bd5c249c9ab4796ea1cbe652d8042e5623bddb1d9d3
container_end_page 38
container_issue 1
container_start_page 19
container_title Flow, turbulence and combustion
container_volume 100
creator Pogorelov, Alexej
Schneiders, Lennart
Meinke, Matthias
Schröder, Wolfgang
description An efficient Cartesian cut-cell/level-set method based on a multiple grid approach to simulate turbulent turbomachinery flows is presented. The finite-volume approach in an unstructured hierarchical Cartesian setup with a sharp representation of the complex moving boundaries embedded into the computational domain, which are described by multiple level-sets, ensures a strict conservation of mass, momentum, and energy. Furthermore, an efficient kinematic motion level-set interface method for the rotation of embedded boundaries described by multiple level-set fields on a computational domain distributed over several processors is introduced. This method allows the simulation of multiple boundaries rotating relatively to each other in a fixed frame of reference. To demonstrate the efficiency of the numerical method and the quality of the computed findings the generic test problem of a rotating cylinder surrounded by a stationary hull and the flow over a ducted rotating axial fan with a stationary turbulence generating grid at the inflow are simulated. The computational results of the axial fan show a good agreement with the experimental data.
doi_str_mv 10.1007/s10494-017-9827-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1976030801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1976030801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-33197c038d1f4286d4ee71bd5c249c9ab4796ea1cbe652d8042e5623bddb1d9d3</originalsourceid><addsrcrecordid>eNp1kMtOwzAURC0EEqXwAewssQ7YceLHslS8pFZItKwtJ75pU6VxsB0Qf4-rsmDD5s4sZuZKB6FrSm4pIeIuUFKoIiNUZErm6ZygCS0Fy6iS4jR5JnnGqSzO0UUIO0IIF0RNkJn1eGbNENtPwHPjI4TW9HgJYYvvTQCbbNw6i6PDq3Y_diYCXo--GjvoI37s3FfArsHLsYvt0AF-c9HEtt_g1egbU0O4RGeN6QJc_eoUvT8-rOfP2eL16WU-W2Q1ozxmjFElasKkpU2RS24LAEErW9Z5oWplqkIoDobWFfAyt5IUOZQ8Z5W1FbXKsim6Oe4O3n2MEKLeudH36aVOy5wwIglNKXpM1d6F4KHRg2_3xn9rSvSBpD6S1ImkPpDUKnXyYyekbL8B_2f539IPTJl2Vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976030801</pqid></control><display><type>article</type><title>An Adaptive Cartesian Mesh Based Method to Simulate Turbulent Flows of Multiple Rotating Surfaces</title><source>Springer Nature</source><creator>Pogorelov, Alexej ; Schneiders, Lennart ; Meinke, Matthias ; Schröder, Wolfgang</creator><creatorcontrib>Pogorelov, Alexej ; Schneiders, Lennart ; Meinke, Matthias ; Schröder, Wolfgang</creatorcontrib><description>An efficient Cartesian cut-cell/level-set method based on a multiple grid approach to simulate turbulent turbomachinery flows is presented. The finite-volume approach in an unstructured hierarchical Cartesian setup with a sharp representation of the complex moving boundaries embedded into the computational domain, which are described by multiple level-sets, ensures a strict conservation of mass, momentum, and energy. Furthermore, an efficient kinematic motion level-set interface method for the rotation of embedded boundaries described by multiple level-set fields on a computational domain distributed over several processors is introduced. This method allows the simulation of multiple boundaries rotating relatively to each other in a fixed frame of reference. To demonstrate the efficiency of the numerical method and the quality of the computed findings the generic test problem of a rotating cylinder surrounded by a stationary hull and the flow over a ducted rotating axial fan with a stationary turbulence generating grid at the inflow are simulated. The computational results of the axial fan show a good agreement with the experimental data.</description><identifier>ISSN: 1386-6184</identifier><identifier>EISSN: 1573-1987</identifier><identifier>DOI: 10.1007/s10494-017-9827-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Boundaries ; Cartesian coordinates ; Computational fluid dynamics ; Computer simulation ; Energy conservation ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Finite element method ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Inflow ; Kinematics ; Numerical analysis ; Processors ; Rotating cylinders ; Simulation ; Turbomachinery ; Turbulence</subject><ispartof>Flow, turbulence and combustion, 2018, Vol.100 (1), p.19-38</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-33197c038d1f4286d4ee71bd5c249c9ab4796ea1cbe652d8042e5623bddb1d9d3</citedby><cites>FETCH-LOGICAL-c316t-33197c038d1f4286d4ee71bd5c249c9ab4796ea1cbe652d8042e5623bddb1d9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Pogorelov, Alexej</creatorcontrib><creatorcontrib>Schneiders, Lennart</creatorcontrib><creatorcontrib>Meinke, Matthias</creatorcontrib><creatorcontrib>Schröder, Wolfgang</creatorcontrib><title>An Adaptive Cartesian Mesh Based Method to Simulate Turbulent Flows of Multiple Rotating Surfaces</title><title>Flow, turbulence and combustion</title><addtitle>Flow Turbulence Combust</addtitle><description>An efficient Cartesian cut-cell/level-set method based on a multiple grid approach to simulate turbulent turbomachinery flows is presented. The finite-volume approach in an unstructured hierarchical Cartesian setup with a sharp representation of the complex moving boundaries embedded into the computational domain, which are described by multiple level-sets, ensures a strict conservation of mass, momentum, and energy. Furthermore, an efficient kinematic motion level-set interface method for the rotation of embedded boundaries described by multiple level-set fields on a computational domain distributed over several processors is introduced. This method allows the simulation of multiple boundaries rotating relatively to each other in a fixed frame of reference. To demonstrate the efficiency of the numerical method and the quality of the computed findings the generic test problem of a rotating cylinder surrounded by a stationary hull and the flow over a ducted rotating axial fan with a stationary turbulence generating grid at the inflow are simulated. The computational results of the axial fan show a good agreement with the experimental data.</description><subject>Automotive Engineering</subject><subject>Boundaries</subject><subject>Cartesian coordinates</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Energy conservation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Finite element method</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Inflow</subject><subject>Kinematics</subject><subject>Numerical analysis</subject><subject>Processors</subject><subject>Rotating cylinders</subject><subject>Simulation</subject><subject>Turbomachinery</subject><subject>Turbulence</subject><issn>1386-6184</issn><issn>1573-1987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAURC0EEqXwAewssQ7YceLHslS8pFZItKwtJ75pU6VxsB0Qf4-rsmDD5s4sZuZKB6FrSm4pIeIuUFKoIiNUZErm6ZygCS0Fy6iS4jR5JnnGqSzO0UUIO0IIF0RNkJn1eGbNENtPwHPjI4TW9HgJYYvvTQCbbNw6i6PDq3Y_diYCXo--GjvoI37s3FfArsHLsYvt0AF-c9HEtt_g1egbU0O4RGeN6QJc_eoUvT8-rOfP2eL16WU-W2Q1ozxmjFElasKkpU2RS24LAEErW9Z5oWplqkIoDobWFfAyt5IUOZQ8Z5W1FbXKsim6Oe4O3n2MEKLeudH36aVOy5wwIglNKXpM1d6F4KHRg2_3xn9rSvSBpD6S1ImkPpDUKnXyYyekbL8B_2f539IPTJl2Vw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Pogorelov, Alexej</creator><creator>Schneiders, Lennart</creator><creator>Meinke, Matthias</creator><creator>Schröder, Wolfgang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>An Adaptive Cartesian Mesh Based Method to Simulate Turbulent Flows of Multiple Rotating Surfaces</title><author>Pogorelov, Alexej ; Schneiders, Lennart ; Meinke, Matthias ; Schröder, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-33197c038d1f4286d4ee71bd5c249c9ab4796ea1cbe652d8042e5623bddb1d9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automotive Engineering</topic><topic>Boundaries</topic><topic>Cartesian coordinates</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Energy conservation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Finite element method</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Inflow</topic><topic>Kinematics</topic><topic>Numerical analysis</topic><topic>Processors</topic><topic>Rotating cylinders</topic><topic>Simulation</topic><topic>Turbomachinery</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pogorelov, Alexej</creatorcontrib><creatorcontrib>Schneiders, Lennart</creatorcontrib><creatorcontrib>Meinke, Matthias</creatorcontrib><creatorcontrib>Schröder, Wolfgang</creatorcontrib><collection>CrossRef</collection><jtitle>Flow, turbulence and combustion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pogorelov, Alexej</au><au>Schneiders, Lennart</au><au>Meinke, Matthias</au><au>Schröder, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Cartesian Mesh Based Method to Simulate Turbulent Flows of Multiple Rotating Surfaces</atitle><jtitle>Flow, turbulence and combustion</jtitle><stitle>Flow Turbulence Combust</stitle><date>2018</date><risdate>2018</risdate><volume>100</volume><issue>1</issue><spage>19</spage><epage>38</epage><pages>19-38</pages><issn>1386-6184</issn><eissn>1573-1987</eissn><abstract>An efficient Cartesian cut-cell/level-set method based on a multiple grid approach to simulate turbulent turbomachinery flows is presented. The finite-volume approach in an unstructured hierarchical Cartesian setup with a sharp representation of the complex moving boundaries embedded into the computational domain, which are described by multiple level-sets, ensures a strict conservation of mass, momentum, and energy. Furthermore, an efficient kinematic motion level-set interface method for the rotation of embedded boundaries described by multiple level-set fields on a computational domain distributed over several processors is introduced. This method allows the simulation of multiple boundaries rotating relatively to each other in a fixed frame of reference. To demonstrate the efficiency of the numerical method and the quality of the computed findings the generic test problem of a rotating cylinder surrounded by a stationary hull and the flow over a ducted rotating axial fan with a stationary turbulence generating grid at the inflow are simulated. The computational results of the axial fan show a good agreement with the experimental data.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10494-017-9827-9</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-6184
ispartof Flow, turbulence and combustion, 2018, Vol.100 (1), p.19-38
issn 1386-6184
1573-1987
language eng
recordid cdi_proquest_journals_1976030801
source Springer Nature
subjects Automotive Engineering
Boundaries
Cartesian coordinates
Computational fluid dynamics
Computer simulation
Energy conservation
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Finite element method
Fluid- and Aerodynamics
Heat and Mass Transfer
Inflow
Kinematics
Numerical analysis
Processors
Rotating cylinders
Simulation
Turbomachinery
Turbulence
title An Adaptive Cartesian Mesh Based Method to Simulate Turbulent Flows of Multiple Rotating Surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Cartesian%20Mesh%20Based%20Method%20to%20Simulate%20Turbulent%20Flows%20of%20Multiple%20Rotating%20Surfaces&rft.jtitle=Flow,%20turbulence%20and%20combustion&rft.au=Pogorelov,%20Alexej&rft.date=2018&rft.volume=100&rft.issue=1&rft.spage=19&rft.epage=38&rft.pages=19-38&rft.issn=1386-6184&rft.eissn=1573-1987&rft_id=info:doi/10.1007/s10494-017-9827-9&rft_dat=%3Cproquest_cross%3E1976030801%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-33197c038d1f4286d4ee71bd5c249c9ab4796ea1cbe652d8042e5623bddb1d9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1976030801&rft_id=info:pmid/&rfr_iscdi=true