Loading…
An Adaptive Cartesian Mesh Based Method to Simulate Turbulent Flows of Multiple Rotating Surfaces
An efficient Cartesian cut-cell/level-set method based on a multiple grid approach to simulate turbulent turbomachinery flows is presented. The finite-volume approach in an unstructured hierarchical Cartesian setup with a sharp representation of the complex moving boundaries embedded into the comput...
Saved in:
Published in: | Flow, turbulence and combustion turbulence and combustion, 2018, Vol.100 (1), p.19-38 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-33197c038d1f4286d4ee71bd5c249c9ab4796ea1cbe652d8042e5623bddb1d9d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-33197c038d1f4286d4ee71bd5c249c9ab4796ea1cbe652d8042e5623bddb1d9d3 |
container_end_page | 38 |
container_issue | 1 |
container_start_page | 19 |
container_title | Flow, turbulence and combustion |
container_volume | 100 |
creator | Pogorelov, Alexej Schneiders, Lennart Meinke, Matthias Schröder, Wolfgang |
description | An efficient Cartesian cut-cell/level-set method based on a multiple grid approach to simulate turbulent turbomachinery flows is presented. The finite-volume approach in an unstructured hierarchical Cartesian setup with a sharp representation of the complex moving boundaries embedded into the computational domain, which are described by multiple level-sets, ensures a strict conservation of mass, momentum, and energy. Furthermore, an efficient kinematic motion level-set interface method for the rotation of embedded boundaries described by multiple level-set fields on a computational domain distributed over several processors is introduced. This method allows the simulation of multiple boundaries rotating relatively to each other in a fixed frame of reference. To demonstrate the efficiency of the numerical method and the quality of the computed findings the generic test problem of a rotating cylinder surrounded by a stationary hull and the flow over a ducted rotating axial fan with a stationary turbulence generating grid at the inflow are simulated. The computational results of the axial fan show a good agreement with the experimental data. |
doi_str_mv | 10.1007/s10494-017-9827-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1976030801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1976030801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-33197c038d1f4286d4ee71bd5c249c9ab4796ea1cbe652d8042e5623bddb1d9d3</originalsourceid><addsrcrecordid>eNp1kMtOwzAURC0EEqXwAewssQ7YceLHslS8pFZItKwtJ75pU6VxsB0Qf4-rsmDD5s4sZuZKB6FrSm4pIeIuUFKoIiNUZErm6ZygCS0Fy6iS4jR5JnnGqSzO0UUIO0IIF0RNkJn1eGbNENtPwHPjI4TW9HgJYYvvTQCbbNw6i6PDq3Y_diYCXo--GjvoI37s3FfArsHLsYvt0AF-c9HEtt_g1egbU0O4RGeN6QJc_eoUvT8-rOfP2eL16WU-W2Q1ozxmjFElasKkpU2RS24LAEErW9Z5oWplqkIoDobWFfAyt5IUOZQ8Z5W1FbXKsim6Oe4O3n2MEKLeudH36aVOy5wwIglNKXpM1d6F4KHRg2_3xn9rSvSBpD6S1ImkPpDUKnXyYyekbL8B_2f539IPTJl2Vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976030801</pqid></control><display><type>article</type><title>An Adaptive Cartesian Mesh Based Method to Simulate Turbulent Flows of Multiple Rotating Surfaces</title><source>Springer Nature</source><creator>Pogorelov, Alexej ; Schneiders, Lennart ; Meinke, Matthias ; Schröder, Wolfgang</creator><creatorcontrib>Pogorelov, Alexej ; Schneiders, Lennart ; Meinke, Matthias ; Schröder, Wolfgang</creatorcontrib><description>An efficient Cartesian cut-cell/level-set method based on a multiple grid approach to simulate turbulent turbomachinery flows is presented. The finite-volume approach in an unstructured hierarchical Cartesian setup with a sharp representation of the complex moving boundaries embedded into the computational domain, which are described by multiple level-sets, ensures a strict conservation of mass, momentum, and energy. Furthermore, an efficient kinematic motion level-set interface method for the rotation of embedded boundaries described by multiple level-set fields on a computational domain distributed over several processors is introduced. This method allows the simulation of multiple boundaries rotating relatively to each other in a fixed frame of reference. To demonstrate the efficiency of the numerical method and the quality of the computed findings the generic test problem of a rotating cylinder surrounded by a stationary hull and the flow over a ducted rotating axial fan with a stationary turbulence generating grid at the inflow are simulated. The computational results of the axial fan show a good agreement with the experimental data.</description><identifier>ISSN: 1386-6184</identifier><identifier>EISSN: 1573-1987</identifier><identifier>DOI: 10.1007/s10494-017-9827-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Boundaries ; Cartesian coordinates ; Computational fluid dynamics ; Computer simulation ; Energy conservation ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Finite element method ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Inflow ; Kinematics ; Numerical analysis ; Processors ; Rotating cylinders ; Simulation ; Turbomachinery ; Turbulence</subject><ispartof>Flow, turbulence and combustion, 2018, Vol.100 (1), p.19-38</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-33197c038d1f4286d4ee71bd5c249c9ab4796ea1cbe652d8042e5623bddb1d9d3</citedby><cites>FETCH-LOGICAL-c316t-33197c038d1f4286d4ee71bd5c249c9ab4796ea1cbe652d8042e5623bddb1d9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Pogorelov, Alexej</creatorcontrib><creatorcontrib>Schneiders, Lennart</creatorcontrib><creatorcontrib>Meinke, Matthias</creatorcontrib><creatorcontrib>Schröder, Wolfgang</creatorcontrib><title>An Adaptive Cartesian Mesh Based Method to Simulate Turbulent Flows of Multiple Rotating Surfaces</title><title>Flow, turbulence and combustion</title><addtitle>Flow Turbulence Combust</addtitle><description>An efficient Cartesian cut-cell/level-set method based on a multiple grid approach to simulate turbulent turbomachinery flows is presented. The finite-volume approach in an unstructured hierarchical Cartesian setup with a sharp representation of the complex moving boundaries embedded into the computational domain, which are described by multiple level-sets, ensures a strict conservation of mass, momentum, and energy. Furthermore, an efficient kinematic motion level-set interface method for the rotation of embedded boundaries described by multiple level-set fields on a computational domain distributed over several processors is introduced. This method allows the simulation of multiple boundaries rotating relatively to each other in a fixed frame of reference. To demonstrate the efficiency of the numerical method and the quality of the computed findings the generic test problem of a rotating cylinder surrounded by a stationary hull and the flow over a ducted rotating axial fan with a stationary turbulence generating grid at the inflow are simulated. The computational results of the axial fan show a good agreement with the experimental data.</description><subject>Automotive Engineering</subject><subject>Boundaries</subject><subject>Cartesian coordinates</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Energy conservation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Finite element method</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Inflow</subject><subject>Kinematics</subject><subject>Numerical analysis</subject><subject>Processors</subject><subject>Rotating cylinders</subject><subject>Simulation</subject><subject>Turbomachinery</subject><subject>Turbulence</subject><issn>1386-6184</issn><issn>1573-1987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAURC0EEqXwAewssQ7YceLHslS8pFZItKwtJ75pU6VxsB0Qf4-rsmDD5s4sZuZKB6FrSm4pIeIuUFKoIiNUZErm6ZygCS0Fy6iS4jR5JnnGqSzO0UUIO0IIF0RNkJn1eGbNENtPwHPjI4TW9HgJYYvvTQCbbNw6i6PDq3Y_diYCXo--GjvoI37s3FfArsHLsYvt0AF-c9HEtt_g1egbU0O4RGeN6QJc_eoUvT8-rOfP2eL16WU-W2Q1ozxmjFElasKkpU2RS24LAEErW9Z5oWplqkIoDobWFfAyt5IUOZQ8Z5W1FbXKsim6Oe4O3n2MEKLeudH36aVOy5wwIglNKXpM1d6F4KHRg2_3xn9rSvSBpD6S1ImkPpDUKnXyYyekbL8B_2f539IPTJl2Vw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Pogorelov, Alexej</creator><creator>Schneiders, Lennart</creator><creator>Meinke, Matthias</creator><creator>Schröder, Wolfgang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>An Adaptive Cartesian Mesh Based Method to Simulate Turbulent Flows of Multiple Rotating Surfaces</title><author>Pogorelov, Alexej ; Schneiders, Lennart ; Meinke, Matthias ; Schröder, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-33197c038d1f4286d4ee71bd5c249c9ab4796ea1cbe652d8042e5623bddb1d9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automotive Engineering</topic><topic>Boundaries</topic><topic>Cartesian coordinates</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Energy conservation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Finite element method</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Inflow</topic><topic>Kinematics</topic><topic>Numerical analysis</topic><topic>Processors</topic><topic>Rotating cylinders</topic><topic>Simulation</topic><topic>Turbomachinery</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pogorelov, Alexej</creatorcontrib><creatorcontrib>Schneiders, Lennart</creatorcontrib><creatorcontrib>Meinke, Matthias</creatorcontrib><creatorcontrib>Schröder, Wolfgang</creatorcontrib><collection>CrossRef</collection><jtitle>Flow, turbulence and combustion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pogorelov, Alexej</au><au>Schneiders, Lennart</au><au>Meinke, Matthias</au><au>Schröder, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Cartesian Mesh Based Method to Simulate Turbulent Flows of Multiple Rotating Surfaces</atitle><jtitle>Flow, turbulence and combustion</jtitle><stitle>Flow Turbulence Combust</stitle><date>2018</date><risdate>2018</risdate><volume>100</volume><issue>1</issue><spage>19</spage><epage>38</epage><pages>19-38</pages><issn>1386-6184</issn><eissn>1573-1987</eissn><abstract>An efficient Cartesian cut-cell/level-set method based on a multiple grid approach to simulate turbulent turbomachinery flows is presented. The finite-volume approach in an unstructured hierarchical Cartesian setup with a sharp representation of the complex moving boundaries embedded into the computational domain, which are described by multiple level-sets, ensures a strict conservation of mass, momentum, and energy. Furthermore, an efficient kinematic motion level-set interface method for the rotation of embedded boundaries described by multiple level-set fields on a computational domain distributed over several processors is introduced. This method allows the simulation of multiple boundaries rotating relatively to each other in a fixed frame of reference. To demonstrate the efficiency of the numerical method and the quality of the computed findings the generic test problem of a rotating cylinder surrounded by a stationary hull and the flow over a ducted rotating axial fan with a stationary turbulence generating grid at the inflow are simulated. The computational results of the axial fan show a good agreement with the experimental data.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10494-017-9827-9</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-6184 |
ispartof | Flow, turbulence and combustion, 2018, Vol.100 (1), p.19-38 |
issn | 1386-6184 1573-1987 |
language | eng |
recordid | cdi_proquest_journals_1976030801 |
source | Springer Nature |
subjects | Automotive Engineering Boundaries Cartesian coordinates Computational fluid dynamics Computer simulation Energy conservation Engineering Engineering Fluid Dynamics Engineering Thermodynamics Finite element method Fluid- and Aerodynamics Heat and Mass Transfer Inflow Kinematics Numerical analysis Processors Rotating cylinders Simulation Turbomachinery Turbulence |
title | An Adaptive Cartesian Mesh Based Method to Simulate Turbulent Flows of Multiple Rotating Surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Cartesian%20Mesh%20Based%20Method%20to%20Simulate%20Turbulent%20Flows%20of%20Multiple%20Rotating%20Surfaces&rft.jtitle=Flow,%20turbulence%20and%20combustion&rft.au=Pogorelov,%20Alexej&rft.date=2018&rft.volume=100&rft.issue=1&rft.spage=19&rft.epage=38&rft.pages=19-38&rft.issn=1386-6184&rft.eissn=1573-1987&rft_id=info:doi/10.1007/s10494-017-9827-9&rft_dat=%3Cproquest_cross%3E1976030801%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-33197c038d1f4286d4ee71bd5c249c9ab4796ea1cbe652d8042e5623bddb1d9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1976030801&rft_id=info:pmid/&rfr_iscdi=true |