Loading…
Micromechanical modeling of fatigue crack initiation in polycrystals
Fatigue is an important mechanism for the failure of components in many engineering applications and a significant proportion of the fatigue life is spent in the crack initiation phase. Although a large number of research work addresses fatigue life and fatigue crack growth, the problem of modeling...
Saved in:
Published in: | Journal of materials research 2017-12, Vol.32 (23), p.4375-4386 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-470390b6bf9780b9824ecdde66c1f63e452d5ad9b07a84f34aef9774b7e9d84d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-470390b6bf9780b9824ecdde66c1f63e452d5ad9b07a84f34aef9774b7e9d84d3 |
container_end_page | 4386 |
container_issue | 23 |
container_start_page | 4375 |
container_title | Journal of materials research |
container_volume | 32 |
creator | Boeff, Martin Hassan, Hamad ul Hartmaier, Alexander |
description | Fatigue is an important mechanism for the failure of components in many engineering applications and a significant proportion of the fatigue life is spent in the crack initiation phase. Although a large number of research work addresses fatigue life and fatigue crack growth, the problem of modeling crack initiation remains a major challenge in the scientific and engineering community. In the present work, a micromechanical model is developed and applied to study fatigue crack initiation. In particular, the effect of different hardening mechanisms on fatigue crack initiation is investigated. To accomplish this, a model describing the evolution of the particular dislocation structures observed under cyclic plastic deformation is implemented and applied on randomly generated representative microstructures to investigate fatigue crack initiation. Finally, a method is presented to calculate the S–N curve for the polycrystalline materials. With this work, it is demonstrated how the micromechanical modeling can support the understanding of damage and failure mechanisms occurring during fatigue. |
doi_str_mv | 10.1557/jmr.2017.384 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1976266623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2017_384</cupid><sourcerecordid>1976266623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-470390b6bf9780b9824ecdde66c1f63e452d5ad9b07a84f34aef9774b7e9d84d3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWw8QMisZLgr9jOiAoFpCIWmC3HH8EliYudDv33uGoHBiSmO52ee0_3AHCNYIXqmt-th1hhiHhFBD0BMwwpLWuC2SmYQSFoiRtEz8FFSmsIUQ05nYGHV69jGKz-VKPXqi-GYGzvx64IrnBq8t3WFjoq_VX40U8-T8KY22IT-p2OuzSpPl2CM5eLvTrWOfhYPr4vnsvV29PL4n5VakLhVFIOSQNb1rqGC9g2AlOrjbGMaeQYsbTGplamaSFXgjpClc0kpy23jRHUkDm4OeRuYvje2jTJddjGMZ-UqOEMM8YwydTtgcqPpRStk5voBxV3EkG59ySzJ7n3JLOnjJcHPGVs7Gz8Ffo3Xx3j1dBGbzr7z8IPs9Z6Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976266623</pqid></control><display><type>article</type><title>Micromechanical modeling of fatigue crack initiation in polycrystals</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Boeff, Martin ; Hassan, Hamad ul ; Hartmaier, Alexander</creator><creatorcontrib>Boeff, Martin ; Hassan, Hamad ul ; Hartmaier, Alexander</creatorcontrib><description>Fatigue is an important mechanism for the failure of components in many engineering applications and a significant proportion of the fatigue life is spent in the crack initiation phase. Although a large number of research work addresses fatigue life and fatigue crack growth, the problem of modeling crack initiation remains a major challenge in the scientific and engineering community. In the present work, a micromechanical model is developed and applied to study fatigue crack initiation. In particular, the effect of different hardening mechanisms on fatigue crack initiation is investigated. To accomplish this, a model describing the evolution of the particular dislocation structures observed under cyclic plastic deformation is implemented and applied on randomly generated representative microstructures to investigate fatigue crack initiation. Finally, a method is presented to calculate the S–N curve for the polycrystalline materials. With this work, it is demonstrated how the micromechanical modeling can support the understanding of damage and failure mechanisms occurring during fatigue.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2017.384</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Biomaterials ; Crack initiation ; Crack propagation ; Deformation ; Deformation mechanisms ; Dislocations ; Failure mechanisms ; Fatigue failure ; Fatigue life ; Ferritic stainless steel ; Fracture mechanics ; Grain boundaries ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Metal fatigue ; Microstructure ; Modelling ; Nanotechnology ; Plastic deformation ; Polycrystals ; Propagation ; S N diagrams ; Shear stress</subject><ispartof>Journal of materials research, 2017-12, Vol.32 (23), p.4375-4386</ispartof><rights>Copyright © Materials Research Society 2017</rights><rights>The Materials Research Society 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-470390b6bf9780b9824ecdde66c1f63e452d5ad9b07a84f34aef9774b7e9d84d3</citedby><cites>FETCH-LOGICAL-c340t-470390b6bf9780b9824ecdde66c1f63e452d5ad9b07a84f34aef9774b7e9d84d3</cites><orcidid>0000-0003-0946-1682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1976266623/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1976266623?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Boeff, Martin</creatorcontrib><creatorcontrib>Hassan, Hamad ul</creatorcontrib><creatorcontrib>Hartmaier, Alexander</creatorcontrib><title>Micromechanical modeling of fatigue crack initiation in polycrystals</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Fatigue is an important mechanism for the failure of components in many engineering applications and a significant proportion of the fatigue life is spent in the crack initiation phase. Although a large number of research work addresses fatigue life and fatigue crack growth, the problem of modeling crack initiation remains a major challenge in the scientific and engineering community. In the present work, a micromechanical model is developed and applied to study fatigue crack initiation. In particular, the effect of different hardening mechanisms on fatigue crack initiation is investigated. To accomplish this, a model describing the evolution of the particular dislocation structures observed under cyclic plastic deformation is implemented and applied on randomly generated representative microstructures to investigate fatigue crack initiation. Finally, a method is presented to calculate the S–N curve for the polycrystalline materials. With this work, it is demonstrated how the micromechanical modeling can support the understanding of damage and failure mechanisms occurring during fatigue.</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Dislocations</subject><subject>Failure mechanisms</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Ferritic stainless steel</subject><subject>Fracture mechanics</subject><subject>Grain boundaries</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Modelling</subject><subject>Nanotechnology</subject><subject>Plastic deformation</subject><subject>Polycrystals</subject><subject>Propagation</subject><subject>S N diagrams</subject><subject>Shear stress</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkD1PwzAQhi0EEqWw8QMisZLgr9jOiAoFpCIWmC3HH8EliYudDv33uGoHBiSmO52ee0_3AHCNYIXqmt-th1hhiHhFBD0BMwwpLWuC2SmYQSFoiRtEz8FFSmsIUQ05nYGHV69jGKz-VKPXqi-GYGzvx64IrnBq8t3WFjoq_VX40U8-T8KY22IT-p2OuzSpPl2CM5eLvTrWOfhYPr4vnsvV29PL4n5VakLhVFIOSQNb1rqGC9g2AlOrjbGMaeQYsbTGplamaSFXgjpClc0kpy23jRHUkDm4OeRuYvje2jTJddjGMZ-UqOEMM8YwydTtgcqPpRStk5voBxV3EkG59ySzJ7n3JLOnjJcHPGVs7Gz8Ffo3Xx3j1dBGbzr7z8IPs9Z6Dg</recordid><startdate>20171214</startdate><enddate>20171214</enddate><creator>Boeff, Martin</creator><creator>Hassan, Hamad ul</creator><creator>Hartmaier, Alexander</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0946-1682</orcidid></search><sort><creationdate>20171214</creationdate><title>Micromechanical modeling of fatigue crack initiation in polycrystals</title><author>Boeff, Martin ; Hassan, Hamad ul ; Hartmaier, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-470390b6bf9780b9824ecdde66c1f63e452d5ad9b07a84f34aef9774b7e9d84d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Dislocations</topic><topic>Failure mechanisms</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Ferritic stainless steel</topic><topic>Fracture mechanics</topic><topic>Grain boundaries</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Modelling</topic><topic>Nanotechnology</topic><topic>Plastic deformation</topic><topic>Polycrystals</topic><topic>Propagation</topic><topic>S N diagrams</topic><topic>Shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boeff, Martin</creatorcontrib><creatorcontrib>Hassan, Hamad ul</creatorcontrib><creatorcontrib>Hartmaier, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boeff, Martin</au><au>Hassan, Hamad ul</au><au>Hartmaier, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical modeling of fatigue crack initiation in polycrystals</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2017-12-14</date><risdate>2017</risdate><volume>32</volume><issue>23</issue><spage>4375</spage><epage>4386</epage><pages>4375-4386</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Fatigue is an important mechanism for the failure of components in many engineering applications and a significant proportion of the fatigue life is spent in the crack initiation phase. Although a large number of research work addresses fatigue life and fatigue crack growth, the problem of modeling crack initiation remains a major challenge in the scientific and engineering community. In the present work, a micromechanical model is developed and applied to study fatigue crack initiation. In particular, the effect of different hardening mechanisms on fatigue crack initiation is investigated. To accomplish this, a model describing the evolution of the particular dislocation structures observed under cyclic plastic deformation is implemented and applied on randomly generated representative microstructures to investigate fatigue crack initiation. Finally, a method is presented to calculate the S–N curve for the polycrystalline materials. With this work, it is demonstrated how the micromechanical modeling can support the understanding of damage and failure mechanisms occurring during fatigue.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2017.384</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0946-1682</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2017-12, Vol.32 (23), p.4375-4386 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_1976266623 |
source | ABI/INFORM Global; Springer Nature |
subjects | Applied and Technical Physics Biomaterials Crack initiation Crack propagation Deformation Deformation mechanisms Dislocations Failure mechanisms Fatigue failure Fatigue life Ferritic stainless steel Fracture mechanics Grain boundaries Inorganic Chemistry Materials Engineering Materials research Materials Science Metal fatigue Microstructure Modelling Nanotechnology Plastic deformation Polycrystals Propagation S N diagrams Shear stress |
title | Micromechanical modeling of fatigue crack initiation in polycrystals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20modeling%20of%20fatigue%20crack%20initiation%20in%20polycrystals&rft.jtitle=Journal%20of%20materials%20research&rft.au=Boeff,%20Martin&rft.date=2017-12-14&rft.volume=32&rft.issue=23&rft.spage=4375&rft.epage=4386&rft.pages=4375-4386&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2017.384&rft_dat=%3Cproquest_cross%3E1976266623%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-470390b6bf9780b9824ecdde66c1f63e452d5ad9b07a84f34aef9774b7e9d84d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1976266623&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2017_384&rfr_iscdi=true |