Loading…

Micromechanical modeling of fatigue crack initiation in polycrystals

Fatigue is an important mechanism for the failure of components in many engineering applications and a significant proportion of the fatigue life is spent in the crack initiation phase. Although a large number of research work addresses fatigue life and fatigue crack growth, the problem of modeling...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2017-12, Vol.32 (23), p.4375-4386
Main Authors: Boeff, Martin, Hassan, Hamad ul, Hartmaier, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-470390b6bf9780b9824ecdde66c1f63e452d5ad9b07a84f34aef9774b7e9d84d3
cites cdi_FETCH-LOGICAL-c340t-470390b6bf9780b9824ecdde66c1f63e452d5ad9b07a84f34aef9774b7e9d84d3
container_end_page 4386
container_issue 23
container_start_page 4375
container_title Journal of materials research
container_volume 32
creator Boeff, Martin
Hassan, Hamad ul
Hartmaier, Alexander
description Fatigue is an important mechanism for the failure of components in many engineering applications and a significant proportion of the fatigue life is spent in the crack initiation phase. Although a large number of research work addresses fatigue life and fatigue crack growth, the problem of modeling crack initiation remains a major challenge in the scientific and engineering community. In the present work, a micromechanical model is developed and applied to study fatigue crack initiation. In particular, the effect of different hardening mechanisms on fatigue crack initiation is investigated. To accomplish this, a model describing the evolution of the particular dislocation structures observed under cyclic plastic deformation is implemented and applied on randomly generated representative microstructures to investigate fatigue crack initiation. Finally, a method is presented to calculate the S–N curve for the polycrystalline materials. With this work, it is demonstrated how the micromechanical modeling can support the understanding of damage and failure mechanisms occurring during fatigue.
doi_str_mv 10.1557/jmr.2017.384
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1976266623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2017_384</cupid><sourcerecordid>1976266623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-470390b6bf9780b9824ecdde66c1f63e452d5ad9b07a84f34aef9774b7e9d84d3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWw8QMisZLgr9jOiAoFpCIWmC3HH8EliYudDv33uGoHBiSmO52ee0_3AHCNYIXqmt-th1hhiHhFBD0BMwwpLWuC2SmYQSFoiRtEz8FFSmsIUQ05nYGHV69jGKz-VKPXqi-GYGzvx64IrnBq8t3WFjoq_VX40U8-T8KY22IT-p2OuzSpPl2CM5eLvTrWOfhYPr4vnsvV29PL4n5VakLhVFIOSQNb1rqGC9g2AlOrjbGMaeQYsbTGplamaSFXgjpClc0kpy23jRHUkDm4OeRuYvje2jTJddjGMZ-UqOEMM8YwydTtgcqPpRStk5voBxV3EkG59ySzJ7n3JLOnjJcHPGVs7Gz8Ffo3Xx3j1dBGbzr7z8IPs9Z6Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976266623</pqid></control><display><type>article</type><title>Micromechanical modeling of fatigue crack initiation in polycrystals</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Boeff, Martin ; Hassan, Hamad ul ; Hartmaier, Alexander</creator><creatorcontrib>Boeff, Martin ; Hassan, Hamad ul ; Hartmaier, Alexander</creatorcontrib><description>Fatigue is an important mechanism for the failure of components in many engineering applications and a significant proportion of the fatigue life is spent in the crack initiation phase. Although a large number of research work addresses fatigue life and fatigue crack growth, the problem of modeling crack initiation remains a major challenge in the scientific and engineering community. In the present work, a micromechanical model is developed and applied to study fatigue crack initiation. In particular, the effect of different hardening mechanisms on fatigue crack initiation is investigated. To accomplish this, a model describing the evolution of the particular dislocation structures observed under cyclic plastic deformation is implemented and applied on randomly generated representative microstructures to investigate fatigue crack initiation. Finally, a method is presented to calculate the S–N curve for the polycrystalline materials. With this work, it is demonstrated how the micromechanical modeling can support the understanding of damage and failure mechanisms occurring during fatigue.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2017.384</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Biomaterials ; Crack initiation ; Crack propagation ; Deformation ; Deformation mechanisms ; Dislocations ; Failure mechanisms ; Fatigue failure ; Fatigue life ; Ferritic stainless steel ; Fracture mechanics ; Grain boundaries ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Metal fatigue ; Microstructure ; Modelling ; Nanotechnology ; Plastic deformation ; Polycrystals ; Propagation ; S N diagrams ; Shear stress</subject><ispartof>Journal of materials research, 2017-12, Vol.32 (23), p.4375-4386</ispartof><rights>Copyright © Materials Research Society 2017</rights><rights>The Materials Research Society 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-470390b6bf9780b9824ecdde66c1f63e452d5ad9b07a84f34aef9774b7e9d84d3</citedby><cites>FETCH-LOGICAL-c340t-470390b6bf9780b9824ecdde66c1f63e452d5ad9b07a84f34aef9774b7e9d84d3</cites><orcidid>0000-0003-0946-1682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1976266623/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1976266623?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Boeff, Martin</creatorcontrib><creatorcontrib>Hassan, Hamad ul</creatorcontrib><creatorcontrib>Hartmaier, Alexander</creatorcontrib><title>Micromechanical modeling of fatigue crack initiation in polycrystals</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Fatigue is an important mechanism for the failure of components in many engineering applications and a significant proportion of the fatigue life is spent in the crack initiation phase. Although a large number of research work addresses fatigue life and fatigue crack growth, the problem of modeling crack initiation remains a major challenge in the scientific and engineering community. In the present work, a micromechanical model is developed and applied to study fatigue crack initiation. In particular, the effect of different hardening mechanisms on fatigue crack initiation is investigated. To accomplish this, a model describing the evolution of the particular dislocation structures observed under cyclic plastic deformation is implemented and applied on randomly generated representative microstructures to investigate fatigue crack initiation. Finally, a method is presented to calculate the S–N curve for the polycrystalline materials. With this work, it is demonstrated how the micromechanical modeling can support the understanding of damage and failure mechanisms occurring during fatigue.</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Dislocations</subject><subject>Failure mechanisms</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Ferritic stainless steel</subject><subject>Fracture mechanics</subject><subject>Grain boundaries</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Modelling</subject><subject>Nanotechnology</subject><subject>Plastic deformation</subject><subject>Polycrystals</subject><subject>Propagation</subject><subject>S N diagrams</subject><subject>Shear stress</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkD1PwzAQhi0EEqWw8QMisZLgr9jOiAoFpCIWmC3HH8EliYudDv33uGoHBiSmO52ee0_3AHCNYIXqmt-th1hhiHhFBD0BMwwpLWuC2SmYQSFoiRtEz8FFSmsIUQ05nYGHV69jGKz-VKPXqi-GYGzvx64IrnBq8t3WFjoq_VX40U8-T8KY22IT-p2OuzSpPl2CM5eLvTrWOfhYPr4vnsvV29PL4n5VakLhVFIOSQNb1rqGC9g2AlOrjbGMaeQYsbTGplamaSFXgjpClc0kpy23jRHUkDm4OeRuYvje2jTJddjGMZ-UqOEMM8YwydTtgcqPpRStk5voBxV3EkG59ySzJ7n3JLOnjJcHPGVs7Gz8Ffo3Xx3j1dBGbzr7z8IPs9Z6Dg</recordid><startdate>20171214</startdate><enddate>20171214</enddate><creator>Boeff, Martin</creator><creator>Hassan, Hamad ul</creator><creator>Hartmaier, Alexander</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0946-1682</orcidid></search><sort><creationdate>20171214</creationdate><title>Micromechanical modeling of fatigue crack initiation in polycrystals</title><author>Boeff, Martin ; Hassan, Hamad ul ; Hartmaier, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-470390b6bf9780b9824ecdde66c1f63e452d5ad9b07a84f34aef9774b7e9d84d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Dislocations</topic><topic>Failure mechanisms</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Ferritic stainless steel</topic><topic>Fracture mechanics</topic><topic>Grain boundaries</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Modelling</topic><topic>Nanotechnology</topic><topic>Plastic deformation</topic><topic>Polycrystals</topic><topic>Propagation</topic><topic>S N diagrams</topic><topic>Shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boeff, Martin</creatorcontrib><creatorcontrib>Hassan, Hamad ul</creatorcontrib><creatorcontrib>Hartmaier, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boeff, Martin</au><au>Hassan, Hamad ul</au><au>Hartmaier, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical modeling of fatigue crack initiation in polycrystals</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2017-12-14</date><risdate>2017</risdate><volume>32</volume><issue>23</issue><spage>4375</spage><epage>4386</epage><pages>4375-4386</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Fatigue is an important mechanism for the failure of components in many engineering applications and a significant proportion of the fatigue life is spent in the crack initiation phase. Although a large number of research work addresses fatigue life and fatigue crack growth, the problem of modeling crack initiation remains a major challenge in the scientific and engineering community. In the present work, a micromechanical model is developed and applied to study fatigue crack initiation. In particular, the effect of different hardening mechanisms on fatigue crack initiation is investigated. To accomplish this, a model describing the evolution of the particular dislocation structures observed under cyclic plastic deformation is implemented and applied on randomly generated representative microstructures to investigate fatigue crack initiation. Finally, a method is presented to calculate the S–N curve for the polycrystalline materials. With this work, it is demonstrated how the micromechanical modeling can support the understanding of damage and failure mechanisms occurring during fatigue.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2017.384</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0946-1682</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2017-12, Vol.32 (23), p.4375-4386
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_1976266623
source ABI/INFORM Global; Springer Nature
subjects Applied and Technical Physics
Biomaterials
Crack initiation
Crack propagation
Deformation
Deformation mechanisms
Dislocations
Failure mechanisms
Fatigue failure
Fatigue life
Ferritic stainless steel
Fracture mechanics
Grain boundaries
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Metal fatigue
Microstructure
Modelling
Nanotechnology
Plastic deformation
Polycrystals
Propagation
S N diagrams
Shear stress
title Micromechanical modeling of fatigue crack initiation in polycrystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20modeling%20of%20fatigue%20crack%20initiation%20in%20polycrystals&rft.jtitle=Journal%20of%20materials%20research&rft.au=Boeff,%20Martin&rft.date=2017-12-14&rft.volume=32&rft.issue=23&rft.spage=4375&rft.epage=4386&rft.pages=4375-4386&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2017.384&rft_dat=%3Cproquest_cross%3E1976266623%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-470390b6bf9780b9824ecdde66c1f63e452d5ad9b07a84f34aef9774b7e9d84d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1976266623&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2017_384&rfr_iscdi=true