Loading…

Semi-stable Extensions Over 1-dimensional Bases

Given a family of Calabi-Yau varieties over the punctured disc or over the field of Laurentseries, we show that, after a finite base change, the family can be extended across the origin while keeping the canonical class trivial. More generally, we prove similar extension results for families whose l...

Full description

Saved in:
Bibliographic Details
Published in:Acta mathematica Sinica. English series 2018, Vol.34 (1), p.103-113
Main Authors: Kollár, János, Nicaise, Johannes, Xu, Chen Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-1493d593c60fad67f18cfee4a6f5db5dfe634a2decd94d5d6ca5664b1a074bc63
cites cdi_FETCH-LOGICAL-c343t-1493d593c60fad67f18cfee4a6f5db5dfe634a2decd94d5d6ca5664b1a074bc63
container_end_page 113
container_issue 1
container_start_page 103
container_title Acta mathematica Sinica. English series
container_volume 34
creator Kollár, János
Nicaise, Johannes
Xu, Chen Yang
description Given a family of Calabi-Yau varieties over the punctured disc or over the field of Laurentseries, we show that, after a finite base change, the family can be extended across the origin while keeping the canonical class trivial. More generally, we prove similar extension results for families whose log-canonical class is semi-ample. We use these to show that the Berkovich and essential skeleta agree for smooth varieties over C((t)) with semi-ample canonical class.
doi_str_mv 10.1007/s10114-017-7048-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1976363158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674121437</cqvip_id><sourcerecordid>1976363158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-1493d593c60fad67f18cfee4a6f5db5dfe634a2decd94d5d6ca5664b1a074bc63</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKsfwNui59jMJpnsHrXUBxR6UM8hm0fd0u62yVb027tli3jyNMPwfww_Qq6B3QFjapKAAQjKQFHFREGLEzICwUuqENTpcS8k4Dm5SGnFmJQlwxGZvPpNTVNnqrXPZl-db1LdNilbfPqYAXX1ZriYdfZgkk-X5CyYdfJXxzkm74-zt-kznS-eXqb3c2q54B0FUXInS26RBeNQBShs8F4YDNJV0gWPXJjceetK4aRDaySiqMAwJSqLfExuh9xtbHd7nzq9avexfyNpKBVy5CCLXgWDysY2peiD3sZ6Y-K3BqYPXPTARfdc9IGLPnjywZN6bbP08U_yP6abY9FH2yx3ve-3CZWAvMer-A8vpXAa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976363158</pqid></control><display><type>article</type><title>Semi-stable Extensions Over 1-dimensional Bases</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Kollár, János ; Nicaise, Johannes ; Xu, Chen Yang</creator><creatorcontrib>Kollár, János ; Nicaise, Johannes ; Xu, Chen Yang</creatorcontrib><description>Given a family of Calabi-Yau varieties over the punctured disc or over the field of Laurentseries, we show that, after a finite base change, the family can be extended across the origin while keeping the canonical class trivial. More generally, we prove similar extension results for families whose log-canonical class is semi-ample. We use these to show that the Berkovich and essential skeleta agree for smooth varieties over C((t)) with semi-ample canonical class.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-017-7048-8</identifier><language>eng</language><publisher>Beijing: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Dimensional stability ; Mathematics ; Mathematics and Statistics ; Series (mathematics)</subject><ispartof>Acta mathematica Sinica. English series, 2018, Vol.34 (1), p.103-113</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-1493d593c60fad67f18cfee4a6f5db5dfe634a2decd94d5d6ca5664b1a074bc63</citedby><cites>FETCH-LOGICAL-c343t-1493d593c60fad67f18cfee4a6f5db5dfe634a2decd94d5d6ca5664b1a074bc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1976363158?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,4024,11688,27923,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Kollár, János</creatorcontrib><creatorcontrib>Nicaise, Johannes</creatorcontrib><creatorcontrib>Xu, Chen Yang</creatorcontrib><title>Semi-stable Extensions Over 1-dimensional Bases</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>Given a family of Calabi-Yau varieties over the punctured disc or over the field of Laurentseries, we show that, after a finite base change, the family can be extended across the origin while keeping the canonical class trivial. More generally, we prove similar extension results for families whose log-canonical class is semi-ample. We use these to show that the Berkovich and essential skeleta agree for smooth varieties over C((t)) with semi-ample canonical class.</description><subject>Dimensional stability</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Series (mathematics)</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kEtLAzEQx4MoWKsfwNui59jMJpnsHrXUBxR6UM8hm0fd0u62yVb027tli3jyNMPwfww_Qq6B3QFjapKAAQjKQFHFREGLEzICwUuqENTpcS8k4Dm5SGnFmJQlwxGZvPpNTVNnqrXPZl-db1LdNilbfPqYAXX1ZriYdfZgkk-X5CyYdfJXxzkm74-zt-kznS-eXqb3c2q54B0FUXInS26RBeNQBShs8F4YDNJV0gWPXJjceetK4aRDaySiqMAwJSqLfExuh9xtbHd7nzq9avexfyNpKBVy5CCLXgWDysY2peiD3sZ6Y-K3BqYPXPTARfdc9IGLPnjywZN6bbP08U_yP6abY9FH2yx3ve-3CZWAvMer-A8vpXAa</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Kollár, János</creator><creator>Nicaise, Johannes</creator><creator>Xu, Chen Yang</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2018</creationdate><title>Semi-stable Extensions Over 1-dimensional Bases</title><author>Kollár, János ; Nicaise, Johannes ; Xu, Chen Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-1493d593c60fad67f18cfee4a6f5db5dfe634a2decd94d5d6ca5664b1a074bc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dimensional stability</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Series (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kollár, János</creatorcontrib><creatorcontrib>Nicaise, Johannes</creatorcontrib><creatorcontrib>Xu, Chen Yang</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kollár, János</au><au>Nicaise, Johannes</au><au>Xu, Chen Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-stable Extensions Over 1-dimensional Bases</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2018</date><risdate>2018</risdate><volume>34</volume><issue>1</issue><spage>103</spage><epage>113</epage><pages>103-113</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>Given a family of Calabi-Yau varieties over the punctured disc or over the field of Laurentseries, we show that, after a finite base change, the family can be extended across the origin while keeping the canonical class trivial. More generally, we prove similar extension results for families whose log-canonical class is semi-ample. We use these to show that the Berkovich and essential skeleta agree for smooth varieties over C((t)) with semi-ample canonical class.</abstract><cop>Beijing</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-017-7048-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2018, Vol.34 (1), p.103-113
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_journals_1976363158
source ABI/INFORM Global; Springer Link
subjects Dimensional stability
Mathematics
Mathematics and Statistics
Series (mathematics)
title Semi-stable Extensions Over 1-dimensional Bases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-stable%20Extensions%20Over%201-dimensional%20Bases&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Koll%C3%A1r,%20J%C3%A1nos&rft.date=2018&rft.volume=34&rft.issue=1&rft.spage=103&rft.epage=113&rft.pages=103-113&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-017-7048-8&rft_dat=%3Cproquest_cross%3E1976363158%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-1493d593c60fad67f18cfee4a6f5db5dfe634a2decd94d5d6ca5664b1a074bc63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1976363158&rft_id=info:pmid/&rft_cqvip_id=674121437&rfr_iscdi=true