Loading…
Semi-stable Extensions Over 1-dimensional Bases
Given a family of Calabi-Yau varieties over the punctured disc or over the field of Laurentseries, we show that, after a finite base change, the family can be extended across the origin while keeping the canonical class trivial. More generally, we prove similar extension results for families whose l...
Saved in:
Published in: | Acta mathematica Sinica. English series 2018, Vol.34 (1), p.103-113 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-1493d593c60fad67f18cfee4a6f5db5dfe634a2decd94d5d6ca5664b1a074bc63 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-1493d593c60fad67f18cfee4a6f5db5dfe634a2decd94d5d6ca5664b1a074bc63 |
container_end_page | 113 |
container_issue | 1 |
container_start_page | 103 |
container_title | Acta mathematica Sinica. English series |
container_volume | 34 |
creator | Kollár, János Nicaise, Johannes Xu, Chen Yang |
description | Given a family of Calabi-Yau varieties over the punctured disc or over the field of Laurentseries, we show that, after a finite base change, the family can be extended across the origin while keeping the canonical class trivial. More generally, we prove similar extension results for families whose log-canonical class is semi-ample. We use these to show that the Berkovich and essential skeleta agree for smooth varieties over C((t)) with semi-ample canonical class. |
doi_str_mv | 10.1007/s10114-017-7048-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1976363158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674121437</cqvip_id><sourcerecordid>1976363158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-1493d593c60fad67f18cfee4a6f5db5dfe634a2decd94d5d6ca5664b1a074bc63</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKsfwNui59jMJpnsHrXUBxR6UM8hm0fd0u62yVb027tli3jyNMPwfww_Qq6B3QFjapKAAQjKQFHFREGLEzICwUuqENTpcS8k4Dm5SGnFmJQlwxGZvPpNTVNnqrXPZl-db1LdNilbfPqYAXX1ZriYdfZgkk-X5CyYdfJXxzkm74-zt-kznS-eXqb3c2q54B0FUXInS26RBeNQBShs8F4YDNJV0gWPXJjceetK4aRDaySiqMAwJSqLfExuh9xtbHd7nzq9avexfyNpKBVy5CCLXgWDysY2peiD3sZ6Y-K3BqYPXPTARfdc9IGLPnjywZN6bbP08U_yP6abY9FH2yx3ve-3CZWAvMer-A8vpXAa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976363158</pqid></control><display><type>article</type><title>Semi-stable Extensions Over 1-dimensional Bases</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Kollár, János ; Nicaise, Johannes ; Xu, Chen Yang</creator><creatorcontrib>Kollár, János ; Nicaise, Johannes ; Xu, Chen Yang</creatorcontrib><description>Given a family of Calabi-Yau varieties over the punctured disc or over the field of Laurentseries, we show that, after a finite base change, the family can be extended across the origin while keeping the canonical class trivial. More generally, we prove similar extension results for families whose log-canonical class is semi-ample. We use these to show that the Berkovich and essential skeleta agree for smooth varieties over C((t)) with semi-ample canonical class.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-017-7048-8</identifier><language>eng</language><publisher>Beijing: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Dimensional stability ; Mathematics ; Mathematics and Statistics ; Series (mathematics)</subject><ispartof>Acta mathematica Sinica. English series, 2018, Vol.34 (1), p.103-113</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science & Business Media Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-1493d593c60fad67f18cfee4a6f5db5dfe634a2decd94d5d6ca5664b1a074bc63</citedby><cites>FETCH-LOGICAL-c343t-1493d593c60fad67f18cfee4a6f5db5dfe634a2decd94d5d6ca5664b1a074bc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1976363158?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,4024,11688,27923,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Kollár, János</creatorcontrib><creatorcontrib>Nicaise, Johannes</creatorcontrib><creatorcontrib>Xu, Chen Yang</creatorcontrib><title>Semi-stable Extensions Over 1-dimensional Bases</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>Given a family of Calabi-Yau varieties over the punctured disc or over the field of Laurentseries, we show that, after a finite base change, the family can be extended across the origin while keeping the canonical class trivial. More generally, we prove similar extension results for families whose log-canonical class is semi-ample. We use these to show that the Berkovich and essential skeleta agree for smooth varieties over C((t)) with semi-ample canonical class.</description><subject>Dimensional stability</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Series (mathematics)</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kEtLAzEQx4MoWKsfwNui59jMJpnsHrXUBxR6UM8hm0fd0u62yVb027tli3jyNMPwfww_Qq6B3QFjapKAAQjKQFHFREGLEzICwUuqENTpcS8k4Dm5SGnFmJQlwxGZvPpNTVNnqrXPZl-db1LdNilbfPqYAXX1ZriYdfZgkk-X5CyYdfJXxzkm74-zt-kznS-eXqb3c2q54B0FUXInS26RBeNQBShs8F4YDNJV0gWPXJjceetK4aRDaySiqMAwJSqLfExuh9xtbHd7nzq9avexfyNpKBVy5CCLXgWDysY2peiD3sZ6Y-K3BqYPXPTARfdc9IGLPnjywZN6bbP08U_yP6abY9FH2yx3ve-3CZWAvMer-A8vpXAa</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Kollár, János</creator><creator>Nicaise, Johannes</creator><creator>Xu, Chen Yang</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2018</creationdate><title>Semi-stable Extensions Over 1-dimensional Bases</title><author>Kollár, János ; Nicaise, Johannes ; Xu, Chen Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-1493d593c60fad67f18cfee4a6f5db5dfe634a2decd94d5d6ca5664b1a074bc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dimensional stability</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Series (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kollár, János</creatorcontrib><creatorcontrib>Nicaise, Johannes</creatorcontrib><creatorcontrib>Xu, Chen Yang</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kollár, János</au><au>Nicaise, Johannes</au><au>Xu, Chen Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-stable Extensions Over 1-dimensional Bases</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2018</date><risdate>2018</risdate><volume>34</volume><issue>1</issue><spage>103</spage><epage>113</epage><pages>103-113</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>Given a family of Calabi-Yau varieties over the punctured disc or over the field of Laurentseries, we show that, after a finite base change, the family can be extended across the origin while keeping the canonical class trivial. More generally, we prove similar extension results for families whose log-canonical class is semi-ample. We use these to show that the Berkovich and essential skeleta agree for smooth varieties over C((t)) with semi-ample canonical class.</abstract><cop>Beijing</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-017-7048-8</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-8516 |
ispartof | Acta mathematica Sinica. English series, 2018, Vol.34 (1), p.103-113 |
issn | 1439-8516 1439-7617 |
language | eng |
recordid | cdi_proquest_journals_1976363158 |
source | ABI/INFORM Global; Springer Link |
subjects | Dimensional stability Mathematics Mathematics and Statistics Series (mathematics) |
title | Semi-stable Extensions Over 1-dimensional Bases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-stable%20Extensions%20Over%201-dimensional%20Bases&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Koll%C3%A1r,%20J%C3%A1nos&rft.date=2018&rft.volume=34&rft.issue=1&rft.spage=103&rft.epage=113&rft.pages=103-113&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-017-7048-8&rft_dat=%3Cproquest_cross%3E1976363158%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-1493d593c60fad67f18cfee4a6f5db5dfe634a2decd94d5d6ca5664b1a074bc63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1976363158&rft_id=info:pmid/&rft_cqvip_id=674121437&rfr_iscdi=true |