Loading…
In‐Situ Tensile Testing of Propellants in SEM: Influence of Temperature
A tensile module system placed within a Scanning Electron Microscope (SEM) was utilized to conduct in‐situ tensile testing of propellant samples. The tensile module system allows for real‐time in‐situ SEM analysis of the samples to determine the failure mechanism of the propellant material under ten...
Saved in:
Published in: | Propellants, explosives, pyrotechnics explosives, pyrotechnics, 2017-12, Vol.42 (12), p.1396-1400 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3178-3890b468ca678bad384f99cdebe8bed69e44acb4b82cef0f57dd43a6ed7220e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c3178-3890b468ca678bad384f99cdebe8bed69e44acb4b82cef0f57dd43a6ed7220e93 |
container_end_page | 1400 |
container_issue | 12 |
container_start_page | 1396 |
container_title | Propellants, explosives, pyrotechnics |
container_volume | 42 |
creator | Di Benedetto, Giuseppe L. van Ramshorst, Marthinus C. J. Duvalois, Willem Hooijmeijer, Peter A. van der Heijden, Antoine E. D. M. |
description | A tensile module system placed within a Scanning Electron Microscope (SEM) was utilized to conduct in‐situ tensile testing of propellant samples. The tensile module system allows for real‐time in‐situ SEM analysis of the samples to determine the failure mechanism of the propellant material under tensile force. The focus of this study was to vary the experimental parameters of the tensile module system and analyze how they affect the failure mechanism of the samples. The experimental parameters varied included strain rate and sample temperature (−54, +25 and +40 °C). Stress‐strain diagrams were recorded during the in‐situ tensile tests, and these results were coupled with the in‐situ images and videos of the samples captured with SEM analysis. The experiments conducted at −54 °C showed a different failure behavior of the propellant sample due to its rigidity at this low temperature, while experiments conducted at +25 and +40 °C displayed a similar failure mechanism. For future testing using this tensile tester, special attention should be given to improved temperature control of the specimen, especially at low temperatures. |
doi_str_mv | 10.1002/prep.201700178 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1976415795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1976415795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-3890b468ca678bad384f99cdebe8bed69e44acb4b82cef0f57dd43a6ed7220e93</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqWwMkdiTrETJ7bZUFUgUhERLbPlOGeUKnWCnQh14yfwG_kluCqCkeH0bvje3dND6JLgGcE4ue4d9LMEE4bD8CM0IVlCYoo5O0YTzMKeEpKdojPvNwHBYSaoKOzXx-eqGcZoDdY3LQT1Q2Nfo85Epet6aFtlBx81NlotHm-iwpp2BKthD6xh24NTw-jgHJ0Y1Xq4-NEperlbrOcP8fLpvpjfLmOdhlhxygWuaM61yhmvVJ1yaoTQNVTAK6hzAZQqXdGKJxoMNhmra5qqHGqWJBhEOkVXh7u9697GkFVuutHZ8FISwXJKMiayQM0OlHad9w6M7F2zVW4nCZb7uuS-LvlbVzCIg-E9dLD7h5bl86L8834D23xv3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976415795</pqid></control><display><type>article</type><title>In‐Situ Tensile Testing of Propellants in SEM: Influence of Temperature</title><source>Wiley</source><creator>Di Benedetto, Giuseppe L. ; van Ramshorst, Marthinus C. J. ; Duvalois, Willem ; Hooijmeijer, Peter A. ; van der Heijden, Antoine E. D. M.</creator><creatorcontrib>Di Benedetto, Giuseppe L. ; van Ramshorst, Marthinus C. J. ; Duvalois, Willem ; Hooijmeijer, Peter A. ; van der Heijden, Antoine E. D. M.</creatorcontrib><description>A tensile module system placed within a Scanning Electron Microscope (SEM) was utilized to conduct in‐situ tensile testing of propellant samples. The tensile module system allows for real‐time in‐situ SEM analysis of the samples to determine the failure mechanism of the propellant material under tensile force. The focus of this study was to vary the experimental parameters of the tensile module system and analyze how they affect the failure mechanism of the samples. The experimental parameters varied included strain rate and sample temperature (−54, +25 and +40 °C). Stress‐strain diagrams were recorded during the in‐situ tensile tests, and these results were coupled with the in‐situ images and videos of the samples captured with SEM analysis. The experiments conducted at −54 °C showed a different failure behavior of the propellant sample due to its rigidity at this low temperature, while experiments conducted at +25 and +40 °C displayed a similar failure mechanism. For future testing using this tensile tester, special attention should be given to improved temperature control of the specimen, especially at low temperatures.</description><identifier>ISSN: 0721-3115</identifier><identifier>EISSN: 1521-4087</identifier><identifier>DOI: 10.1002/prep.201700178</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Failure analysis ; Failure mechanisms ; In-situ SEM ; In-situ tensile testing ; Micromechanical deformation ; Propellant ; Propellant tests ; Scanning electron microscopy ; Strain rate ; Stress-strain curves ; Stress-strain relationships ; Temperature ; Temperature control ; Temperature effect ; Tensile tests</subject><ispartof>Propellants, explosives, pyrotechnics, 2017-12, Vol.42 (12), p.1396-1400</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-3890b468ca678bad384f99cdebe8bed69e44acb4b82cef0f57dd43a6ed7220e93</citedby><cites>FETCH-LOGICAL-c3178-3890b468ca678bad384f99cdebe8bed69e44acb4b82cef0f57dd43a6ed7220e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Di Benedetto, Giuseppe L.</creatorcontrib><creatorcontrib>van Ramshorst, Marthinus C. J.</creatorcontrib><creatorcontrib>Duvalois, Willem</creatorcontrib><creatorcontrib>Hooijmeijer, Peter A.</creatorcontrib><creatorcontrib>van der Heijden, Antoine E. D. M.</creatorcontrib><title>In‐Situ Tensile Testing of Propellants in SEM: Influence of Temperature</title><title>Propellants, explosives, pyrotechnics</title><description>A tensile module system placed within a Scanning Electron Microscope (SEM) was utilized to conduct in‐situ tensile testing of propellant samples. The tensile module system allows for real‐time in‐situ SEM analysis of the samples to determine the failure mechanism of the propellant material under tensile force. The focus of this study was to vary the experimental parameters of the tensile module system and analyze how they affect the failure mechanism of the samples. The experimental parameters varied included strain rate and sample temperature (−54, +25 and +40 °C). Stress‐strain diagrams were recorded during the in‐situ tensile tests, and these results were coupled with the in‐situ images and videos of the samples captured with SEM analysis. The experiments conducted at −54 °C showed a different failure behavior of the propellant sample due to its rigidity at this low temperature, while experiments conducted at +25 and +40 °C displayed a similar failure mechanism. For future testing using this tensile tester, special attention should be given to improved temperature control of the specimen, especially at low temperatures.</description><subject>Failure analysis</subject><subject>Failure mechanisms</subject><subject>In-situ SEM</subject><subject>In-situ tensile testing</subject><subject>Micromechanical deformation</subject><subject>Propellant</subject><subject>Propellant tests</subject><subject>Scanning electron microscopy</subject><subject>Strain rate</subject><subject>Stress-strain curves</subject><subject>Stress-strain relationships</subject><subject>Temperature</subject><subject>Temperature control</subject><subject>Temperature effect</subject><subject>Tensile tests</subject><issn>0721-3115</issn><issn>1521-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqWwMkdiTrETJ7bZUFUgUhERLbPlOGeUKnWCnQh14yfwG_kluCqCkeH0bvje3dND6JLgGcE4ue4d9LMEE4bD8CM0IVlCYoo5O0YTzMKeEpKdojPvNwHBYSaoKOzXx-eqGcZoDdY3LQT1Q2Nfo85Epet6aFtlBx81NlotHm-iwpp2BKthD6xh24NTw-jgHJ0Y1Xq4-NEperlbrOcP8fLpvpjfLmOdhlhxygWuaM61yhmvVJ1yaoTQNVTAK6hzAZQqXdGKJxoMNhmra5qqHGqWJBhEOkVXh7u9697GkFVuutHZ8FISwXJKMiayQM0OlHad9w6M7F2zVW4nCZb7uuS-LvlbVzCIg-E9dLD7h5bl86L8834D23xv3g</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Di Benedetto, Giuseppe L.</creator><creator>van Ramshorst, Marthinus C. J.</creator><creator>Duvalois, Willem</creator><creator>Hooijmeijer, Peter A.</creator><creator>van der Heijden, Antoine E. D. M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201712</creationdate><title>In‐Situ Tensile Testing of Propellants in SEM: Influence of Temperature</title><author>Di Benedetto, Giuseppe L. ; van Ramshorst, Marthinus C. J. ; Duvalois, Willem ; Hooijmeijer, Peter A. ; van der Heijden, Antoine E. D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-3890b468ca678bad384f99cdebe8bed69e44acb4b82cef0f57dd43a6ed7220e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Failure analysis</topic><topic>Failure mechanisms</topic><topic>In-situ SEM</topic><topic>In-situ tensile testing</topic><topic>Micromechanical deformation</topic><topic>Propellant</topic><topic>Propellant tests</topic><topic>Scanning electron microscopy</topic><topic>Strain rate</topic><topic>Stress-strain curves</topic><topic>Stress-strain relationships</topic><topic>Temperature</topic><topic>Temperature control</topic><topic>Temperature effect</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Benedetto, Giuseppe L.</creatorcontrib><creatorcontrib>van Ramshorst, Marthinus C. J.</creatorcontrib><creatorcontrib>Duvalois, Willem</creatorcontrib><creatorcontrib>Hooijmeijer, Peter A.</creatorcontrib><creatorcontrib>van der Heijden, Antoine E. D. M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Propellants, explosives, pyrotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Benedetto, Giuseppe L.</au><au>van Ramshorst, Marthinus C. J.</au><au>Duvalois, Willem</au><au>Hooijmeijer, Peter A.</au><au>van der Heijden, Antoine E. D. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In‐Situ Tensile Testing of Propellants in SEM: Influence of Temperature</atitle><jtitle>Propellants, explosives, pyrotechnics</jtitle><date>2017-12</date><risdate>2017</risdate><volume>42</volume><issue>12</issue><spage>1396</spage><epage>1400</epage><pages>1396-1400</pages><issn>0721-3115</issn><eissn>1521-4087</eissn><abstract>A tensile module system placed within a Scanning Electron Microscope (SEM) was utilized to conduct in‐situ tensile testing of propellant samples. The tensile module system allows for real‐time in‐situ SEM analysis of the samples to determine the failure mechanism of the propellant material under tensile force. The focus of this study was to vary the experimental parameters of the tensile module system and analyze how they affect the failure mechanism of the samples. The experimental parameters varied included strain rate and sample temperature (−54, +25 and +40 °C). Stress‐strain diagrams were recorded during the in‐situ tensile tests, and these results were coupled with the in‐situ images and videos of the samples captured with SEM analysis. The experiments conducted at −54 °C showed a different failure behavior of the propellant sample due to its rigidity at this low temperature, while experiments conducted at +25 and +40 °C displayed a similar failure mechanism. For future testing using this tensile tester, special attention should be given to improved temperature control of the specimen, especially at low temperatures.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/prep.201700178</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0721-3115 |
ispartof | Propellants, explosives, pyrotechnics, 2017-12, Vol.42 (12), p.1396-1400 |
issn | 0721-3115 1521-4087 |
language | eng |
recordid | cdi_proquest_journals_1976415795 |
source | Wiley |
subjects | Failure analysis Failure mechanisms In-situ SEM In-situ tensile testing Micromechanical deformation Propellant Propellant tests Scanning electron microscopy Strain rate Stress-strain curves Stress-strain relationships Temperature Temperature control Temperature effect Tensile tests |
title | In‐Situ Tensile Testing of Propellants in SEM: Influence of Temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%E2%80%90Situ%20Tensile%20Testing%20of%20Propellants%20in%20SEM:%20Influence%20of%20Temperature&rft.jtitle=Propellants,%20explosives,%20pyrotechnics&rft.au=Di%E2%80%85Benedetto,%20Giuseppe%20L.&rft.date=2017-12&rft.volume=42&rft.issue=12&rft.spage=1396&rft.epage=1400&rft.pages=1396-1400&rft.issn=0721-3115&rft.eissn=1521-4087&rft_id=info:doi/10.1002/prep.201700178&rft_dat=%3Cproquest_cross%3E1976415795%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3178-3890b468ca678bad384f99cdebe8bed69e44acb4b82cef0f57dd43a6ed7220e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1976415795&rft_id=info:pmid/&rfr_iscdi=true |