Loading…
Time-Temperature-Age Superposition Validation for Linear Viscoelastic Properties of Bituminous Materials
AbstractAging, as an integral part of organic materials like asphalt binder, imposes a significant effect on chemical, physical, and performance-related properties of asphalt mixtures. One of the methods that has been proposed for consideration of aging in constitutive models of asphalt binder and a...
Saved in:
Published in: | Journal of materials in civil engineering 2018-02, Vol.30 (2) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | AbstractAging, as an integral part of organic materials like asphalt binder, imposes a significant effect on chemical, physical, and performance-related properties of asphalt mixtures. One of the methods that has been proposed for consideration of aging in constitutive models of asphalt binder and asphalt mixtures within a linear viscoelastic range is time-temperature-age superposition of material function master curves. However, use of this method has not yet been verified for different bituminous materials. Thus, in this study, the validity of time-temperature-age superposition for different bituminous materials was tested. Furthermore, a valid framework to apply time-temperature-age superposition to viscoelastic material functions of asphalt binders was proposed. Oscillation tests within linear viscoelastic limits of asphalt binder and asphalt mixtures were applied on laboratory-aged specimens. Phase angle and complex modulus master curves were determined and the applicability of time-temperature-age shifting was evaluated. The results suggest that temperature-independent horizontal shift factors can be considered for asphalt binders. Furthermore, dynamic modulus testing of the asphalt mixtures at different aging levels shows that because of a local maximum existing in the phase angle master curve of asphalt mixture, horizontal and vertical shift factors cannot yield a superposition of the phase angle master curves. It can be concluded that time-temperature-age shifting cannot be used to implement aging in the constitutive models of asphalt mixtures. |
---|---|
ISSN: | 0899-1561 1943-5533 |
DOI: | 10.1061/(ASCE)MT.1943-5533.0002162 |