Loading…
Outlier detection
Outlier detection is an area of research with a long history which has applications in many fields. This article provides a nontechnical and concise overview of the commonly used approaches for detecting outliers, including classical methods, new challenges posed by real‐world massive data, and some...
Saved in:
Published in: | Wiley interdisciplinary reviews. Data mining and knowledge discovery 2011-05, Vol.1 (3), p.261-268 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3279-a1da7e1088d07ad1a295c4b52100aefafd9397cfbdaa4c08b86181beb2108ca93 |
---|---|
cites | cdi_FETCH-LOGICAL-c3279-a1da7e1088d07ad1a295c4b52100aefafd9397cfbdaa4c08b86181beb2108ca93 |
container_end_page | 268 |
container_issue | 3 |
container_start_page | 261 |
container_title | Wiley interdisciplinary reviews. Data mining and knowledge discovery |
container_volume | 1 |
creator | Su, Xiaogang Tsai, Chih-Ling |
description | Outlier detection is an area of research with a long history which has applications in many fields. This article provides a nontechnical and concise overview of the commonly used approaches for detecting outliers, including classical methods, new challenges posed by real‐world massive data, and some of the key advances made in recent years. © 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 261–268 DOI: 10.1002/widm.19
This article is categorized under:
Algorithmic Development > Scalable Statistical Methods
Fundamental Concepts of Data and Knowledge > Motivation and Emergence of Data Mining
Algorithmic Development > Statistics
Technologies > Structure Discovery and Clustering |
doi_str_mv | 10.1002/widm.19 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1977745788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977745788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3279-a1da7e1088d07ad1a295c4b52100aefafd9397cfbdaa4c08b86181beb2108ca93</originalsourceid><addsrcrecordid>eNp1z0tPAjEQAODGaCJBYvwHJh48mMU-dpn2aEABg-IB5dh0225SXFhsd4P8e4truDmXmcM3L4QuCe4TjOn9zpl1n4gT1CEipUkKIjs91hzOUS-EFY7BKOecdtDVvKlLZ_21sbXVtas2F-isUGWwvb_cRe9Pj4vhJJnNx9PhwyzRjIJIFDEKLMGcGwzKEEVFptM8o_EOZQtVGMEE6CI3SqUa85wPCCe5zSPgWgnWRTft3K2vvhobarmqGr-JKyURAJBmwHlUt63SvgrB20JuvVsrv5cEy8PL8vBy7IjyrpU7V9r9f0wup6OXX5202oXafh-18p9yAAwyuXwdy-fhAk_e0pH8YD84lGTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977745788</pqid></control><display><type>article</type><title>Outlier detection</title><source>Wiley</source><creator>Su, Xiaogang ; Tsai, Chih-Ling</creator><creatorcontrib>Su, Xiaogang ; Tsai, Chih-Ling</creatorcontrib><description>Outlier detection is an area of research with a long history which has applications in many fields. This article provides a nontechnical and concise overview of the commonly used approaches for detecting outliers, including classical methods, new challenges posed by real‐world massive data, and some of the key advances made in recent years. © 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 261–268 DOI: 10.1002/widm.19
This article is categorized under:
Algorithmic Development > Scalable Statistical Methods
Fundamental Concepts of Data and Knowledge > Motivation and Emergence of Data Mining
Algorithmic Development > Statistics
Technologies > Structure Discovery and Clustering</description><identifier>ISSN: 1942-4787</identifier><identifier>EISSN: 1942-4795</identifier><identifier>DOI: 10.1002/widm.19</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Clustering ; Data analysis ; Data mining ; Outliers (statistics) ; Statistical methods</subject><ispartof>Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2011-05, Vol.1 (3), p.261-268</ispartof><rights>Copyright © 2011 John Wiley & Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3279-a1da7e1088d07ad1a295c4b52100aefafd9397cfbdaa4c08b86181beb2108ca93</citedby><cites>FETCH-LOGICAL-c3279-a1da7e1088d07ad1a295c4b52100aefafd9397cfbdaa4c08b86181beb2108ca93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Su, Xiaogang</creatorcontrib><creatorcontrib>Tsai, Chih-Ling</creatorcontrib><title>Outlier detection</title><title>Wiley interdisciplinary reviews. Data mining and knowledge discovery</title><addtitle>WIREs Data Mining Knowl Discov</addtitle><description>Outlier detection is an area of research with a long history which has applications in many fields. This article provides a nontechnical and concise overview of the commonly used approaches for detecting outliers, including classical methods, new challenges posed by real‐world massive data, and some of the key advances made in recent years. © 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 261–268 DOI: 10.1002/widm.19
This article is categorized under:
Algorithmic Development > Scalable Statistical Methods
Fundamental Concepts of Data and Knowledge > Motivation and Emergence of Data Mining
Algorithmic Development > Statistics
Technologies > Structure Discovery and Clustering</description><subject>Clustering</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Outliers (statistics)</subject><subject>Statistical methods</subject><issn>1942-4787</issn><issn>1942-4795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1z0tPAjEQAODGaCJBYvwHJh48mMU-dpn2aEABg-IB5dh0225SXFhsd4P8e4truDmXmcM3L4QuCe4TjOn9zpl1n4gT1CEipUkKIjs91hzOUS-EFY7BKOecdtDVvKlLZ_21sbXVtas2F-isUGWwvb_cRe9Pj4vhJJnNx9PhwyzRjIJIFDEKLMGcGwzKEEVFptM8o_EOZQtVGMEE6CI3SqUa85wPCCe5zSPgWgnWRTft3K2vvhobarmqGr-JKyURAJBmwHlUt63SvgrB20JuvVsrv5cEy8PL8vBy7IjyrpU7V9r9f0wup6OXX5202oXafh-18p9yAAwyuXwdy-fhAk_e0pH8YD84lGTI</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Su, Xiaogang</creator><creator>Tsai, Chih-Ling</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201105</creationdate><title>Outlier detection</title><author>Su, Xiaogang ; Tsai, Chih-Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3279-a1da7e1088d07ad1a295c4b52100aefafd9397cfbdaa4c08b86181beb2108ca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Clustering</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Outliers (statistics)</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Xiaogang</creatorcontrib><creatorcontrib>Tsai, Chih-Ling</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Xiaogang</au><au>Tsai, Chih-Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outlier detection</atitle><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle><addtitle>WIREs Data Mining Knowl Discov</addtitle><date>2011-05</date><risdate>2011</risdate><volume>1</volume><issue>3</issue><spage>261</spage><epage>268</epage><pages>261-268</pages><issn>1942-4787</issn><eissn>1942-4795</eissn><abstract>Outlier detection is an area of research with a long history which has applications in many fields. This article provides a nontechnical and concise overview of the commonly used approaches for detecting outliers, including classical methods, new challenges posed by real‐world massive data, and some of the key advances made in recent years. © 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 261–268 DOI: 10.1002/widm.19
This article is categorized under:
Algorithmic Development > Scalable Statistical Methods
Fundamental Concepts of Data and Knowledge > Motivation and Emergence of Data Mining
Algorithmic Development > Statistics
Technologies > Structure Discovery and Clustering</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/widm.19</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-4787 |
ispartof | Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2011-05, Vol.1 (3), p.261-268 |
issn | 1942-4787 1942-4795 |
language | eng |
recordid | cdi_proquest_journals_1977745788 |
source | Wiley |
subjects | Clustering Data analysis Data mining Outliers (statistics) Statistical methods |
title | Outlier detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outlier%20detection&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Data%20mining%20and%20knowledge%20discovery&rft.au=Su,%20Xiaogang&rft.date=2011-05&rft.volume=1&rft.issue=3&rft.spage=261&rft.epage=268&rft.pages=261-268&rft.issn=1942-4787&rft.eissn=1942-4795&rft_id=info:doi/10.1002/widm.19&rft_dat=%3Cproquest_cross%3E1977745788%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3279-a1da7e1088d07ad1a295c4b52100aefafd9397cfbdaa4c08b86181beb2108ca93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1977745788&rft_id=info:pmid/&rfr_iscdi=true |