Loading…

Outlier detection

Outlier detection is an area of research with a long history which has applications in many fields. This article provides a nontechnical and concise overview of the commonly used approaches for detecting outliers, including classical methods, new challenges posed by real‐world massive data, and some...

Full description

Saved in:
Bibliographic Details
Published in:Wiley interdisciplinary reviews. Data mining and knowledge discovery 2011-05, Vol.1 (3), p.261-268
Main Authors: Su, Xiaogang, Tsai, Chih-Ling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3279-a1da7e1088d07ad1a295c4b52100aefafd9397cfbdaa4c08b86181beb2108ca93
cites cdi_FETCH-LOGICAL-c3279-a1da7e1088d07ad1a295c4b52100aefafd9397cfbdaa4c08b86181beb2108ca93
container_end_page 268
container_issue 3
container_start_page 261
container_title Wiley interdisciplinary reviews. Data mining and knowledge discovery
container_volume 1
creator Su, Xiaogang
Tsai, Chih-Ling
description Outlier detection is an area of research with a long history which has applications in many fields. This article provides a nontechnical and concise overview of the commonly used approaches for detecting outliers, including classical methods, new challenges posed by real‐world massive data, and some of the key advances made in recent years. © 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 261–268 DOI: 10.1002/widm.19 This article is categorized under: Algorithmic Development > Scalable Statistical Methods Fundamental Concepts of Data and Knowledge > Motivation and Emergence of Data Mining Algorithmic Development > Statistics Technologies > Structure Discovery and Clustering
doi_str_mv 10.1002/widm.19
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1977745788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977745788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3279-a1da7e1088d07ad1a295c4b52100aefafd9397cfbdaa4c08b86181beb2108ca93</originalsourceid><addsrcrecordid>eNp1z0tPAjEQAODGaCJBYvwHJh48mMU-dpn2aEABg-IB5dh0225SXFhsd4P8e4truDmXmcM3L4QuCe4TjOn9zpl1n4gT1CEipUkKIjs91hzOUS-EFY7BKOecdtDVvKlLZ_21sbXVtas2F-isUGWwvb_cRe9Pj4vhJJnNx9PhwyzRjIJIFDEKLMGcGwzKEEVFptM8o_EOZQtVGMEE6CI3SqUa85wPCCe5zSPgWgnWRTft3K2vvhobarmqGr-JKyURAJBmwHlUt63SvgrB20JuvVsrv5cEy8PL8vBy7IjyrpU7V9r9f0wup6OXX5202oXafh-18p9yAAwyuXwdy-fhAk_e0pH8YD84lGTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977745788</pqid></control><display><type>article</type><title>Outlier detection</title><source>Wiley</source><creator>Su, Xiaogang ; Tsai, Chih-Ling</creator><creatorcontrib>Su, Xiaogang ; Tsai, Chih-Ling</creatorcontrib><description>Outlier detection is an area of research with a long history which has applications in many fields. This article provides a nontechnical and concise overview of the commonly used approaches for detecting outliers, including classical methods, new challenges posed by real‐world massive data, and some of the key advances made in recent years. © 2011 John Wiley &amp; Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 261–268 DOI: 10.1002/widm.19 This article is categorized under: Algorithmic Development &gt; Scalable Statistical Methods Fundamental Concepts of Data and Knowledge &gt; Motivation and Emergence of Data Mining Algorithmic Development &gt; Statistics Technologies &gt; Structure Discovery and Clustering</description><identifier>ISSN: 1942-4787</identifier><identifier>EISSN: 1942-4795</identifier><identifier>DOI: 10.1002/widm.19</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Clustering ; Data analysis ; Data mining ; Outliers (statistics) ; Statistical methods</subject><ispartof>Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2011-05, Vol.1 (3), p.261-268</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3279-a1da7e1088d07ad1a295c4b52100aefafd9397cfbdaa4c08b86181beb2108ca93</citedby><cites>FETCH-LOGICAL-c3279-a1da7e1088d07ad1a295c4b52100aefafd9397cfbdaa4c08b86181beb2108ca93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Su, Xiaogang</creatorcontrib><creatorcontrib>Tsai, Chih-Ling</creatorcontrib><title>Outlier detection</title><title>Wiley interdisciplinary reviews. Data mining and knowledge discovery</title><addtitle>WIREs Data Mining Knowl Discov</addtitle><description>Outlier detection is an area of research with a long history which has applications in many fields. This article provides a nontechnical and concise overview of the commonly used approaches for detecting outliers, including classical methods, new challenges posed by real‐world massive data, and some of the key advances made in recent years. © 2011 John Wiley &amp; Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 261–268 DOI: 10.1002/widm.19 This article is categorized under: Algorithmic Development &gt; Scalable Statistical Methods Fundamental Concepts of Data and Knowledge &gt; Motivation and Emergence of Data Mining Algorithmic Development &gt; Statistics Technologies &gt; Structure Discovery and Clustering</description><subject>Clustering</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Outliers (statistics)</subject><subject>Statistical methods</subject><issn>1942-4787</issn><issn>1942-4795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1z0tPAjEQAODGaCJBYvwHJh48mMU-dpn2aEABg-IB5dh0225SXFhsd4P8e4truDmXmcM3L4QuCe4TjOn9zpl1n4gT1CEipUkKIjs91hzOUS-EFY7BKOecdtDVvKlLZ_21sbXVtas2F-isUGWwvb_cRe9Pj4vhJJnNx9PhwyzRjIJIFDEKLMGcGwzKEEVFptM8o_EOZQtVGMEE6CI3SqUa85wPCCe5zSPgWgnWRTft3K2vvhobarmqGr-JKyURAJBmwHlUt63SvgrB20JuvVsrv5cEy8PL8vBy7IjyrpU7V9r9f0wup6OXX5202oXafh-18p9yAAwyuXwdy-fhAk_e0pH8YD84lGTI</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Su, Xiaogang</creator><creator>Tsai, Chih-Ling</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201105</creationdate><title>Outlier detection</title><author>Su, Xiaogang ; Tsai, Chih-Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3279-a1da7e1088d07ad1a295c4b52100aefafd9397cfbdaa4c08b86181beb2108ca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Clustering</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Outliers (statistics)</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Xiaogang</creatorcontrib><creatorcontrib>Tsai, Chih-Ling</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Xiaogang</au><au>Tsai, Chih-Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outlier detection</atitle><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle><addtitle>WIREs Data Mining Knowl Discov</addtitle><date>2011-05</date><risdate>2011</risdate><volume>1</volume><issue>3</issue><spage>261</spage><epage>268</epage><pages>261-268</pages><issn>1942-4787</issn><eissn>1942-4795</eissn><abstract>Outlier detection is an area of research with a long history which has applications in many fields. This article provides a nontechnical and concise overview of the commonly used approaches for detecting outliers, including classical methods, new challenges posed by real‐world massive data, and some of the key advances made in recent years. © 2011 John Wiley &amp; Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 261–268 DOI: 10.1002/widm.19 This article is categorized under: Algorithmic Development &gt; Scalable Statistical Methods Fundamental Concepts of Data and Knowledge &gt; Motivation and Emergence of Data Mining Algorithmic Development &gt; Statistics Technologies &gt; Structure Discovery and Clustering</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/widm.19</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1942-4787
ispartof Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2011-05, Vol.1 (3), p.261-268
issn 1942-4787
1942-4795
language eng
recordid cdi_proquest_journals_1977745788
source Wiley
subjects Clustering
Data analysis
Data mining
Outliers (statistics)
Statistical methods
title Outlier detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outlier%20detection&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Data%20mining%20and%20knowledge%20discovery&rft.au=Su,%20Xiaogang&rft.date=2011-05&rft.volume=1&rft.issue=3&rft.spage=261&rft.epage=268&rft.pages=261-268&rft.issn=1942-4787&rft.eissn=1942-4795&rft_id=info:doi/10.1002/widm.19&rft_dat=%3Cproquest_cross%3E1977745788%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3279-a1da7e1088d07ad1a295c4b52100aefafd9397cfbdaa4c08b86181beb2108ca93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1977745788&rft_id=info:pmid/&rfr_iscdi=true