Loading…
Working with Noise in Bivariate Data
Learning to work with bivariate data, a key goal of middle-grades statistics curricula, is aided by a sequence of lessons.
Saved in:
Published in: | Mathematics teaching in the middle school 2017-10, Vol.23 (2), p.82-89 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2065-c8e3356393b11ebbda31ae3e254ba1a38ee1b5962560c3a328d1926ce98fbef93 |
---|---|
cites | |
container_end_page | 89 |
container_issue | 2 |
container_start_page | 82 |
container_title | Mathematics teaching in the middle school |
container_volume | 23 |
creator | Groth, Randall E Jones, Matthew Knaub, Mary |
description | Learning to work with bivariate data, a key goal of middle-grades statistics curricula, is aided by a sequence of lessons. |
doi_str_mv | 10.5951/mathteacmiddscho.23.2.0082 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1977755815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1157501</ericid><jstor_id>10.5951/mathteacmiddscho.23.2.0082</jstor_id><sourcerecordid>10.5951/mathteacmiddscho.23.2.0082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2065-c8e3356393b11ebbda31ae3e254ba1a38ee1b5962560c3a328d1926ce98fbef93</originalsourceid><addsrcrecordid>eNqVkM1OwzAQhC0EEqXwCEgRcE3w2nVic4NS_lTBBcTRcpwNdaF1sV0Qb0-qIA7cOO1h5ptZDSFHQAuhBJwuTJolNHbhmibamS8YL1hBqWRbZMA4k7kYyXKbDIBWLKeSq12yF-OcUgqsVANy8uzDq1u-ZJ8uzbJ77yJmbplduA8TnEmYXZpk9slOa94iHvzcIXm6mjyOb_Lpw_Xt-HyaW0ZLkVuJnIuSK14DYF03hoNBjkyMagOGS0SohSqZKKnlpvuuAcVKi0q2NbaKD8lxn7sK_n2NMem5X4dlV6lBVVUlhATRuc56lw0-xoCtXgW3MOFLA9WbVfTfVTTjmunNKh182MMYnP0FJ3cAohIUOr3q9XlMPvwn-RvGHHYG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977755815</pqid></control><display><type>article</type><title>Working with Noise in Bivariate Data</title><source>ERIC</source><source>Access via JSTOR</source><creator>Groth, Randall E ; Jones, Matthew ; Knaub, Mary</creator><creatorcontrib>Groth, Randall E ; Jones, Matthew ; Knaub, Mary</creatorcontrib><description>Learning to work with bivariate data, a key goal of middle-grades statistics curricula, is aided by a sequence of lessons.</description><identifier>ISSN: 1072-0839</identifier><identifier>EISSN: 2328-5486</identifier><identifier>DOI: 10.5951/mathteacmiddscho.23.2.0082</identifier><language>eng</language><publisher>Reston: National Council of Teachers of Mathematics (NCTM)</publisher><subject>Bivariate analysis ; Cognition & reasoning ; Data ; Data analysis ; Data lines ; Datasets ; FEATURES ; Grade 7 ; Grade 8 ; Graphs ; Information retrieval noise ; Line graphs ; Mathematical data ; Mathematics education ; Mathematics Instruction ; Middle schools ; Noise ; Prediction ; Scores ; Signal noise ; Statistics ; Students ; Summer Programs ; Test scores</subject><ispartof>Mathematics teaching in the middle school, 2017-10, Vol.23 (2), p.82-89</ispartof><rights>Copyright 2017 National Council of Teachers of Mathematics, Inc.</rights><rights>Copyright National Council of Teachers of Mathematics Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2065-c8e3356393b11ebbda31ae3e254ba1a38ee1b5962560c3a328d1926ce98fbef93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1157501$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Groth, Randall E</creatorcontrib><creatorcontrib>Jones, Matthew</creatorcontrib><creatorcontrib>Knaub, Mary</creatorcontrib><title>Working with Noise in Bivariate Data</title><title>Mathematics teaching in the middle school</title><description>Learning to work with bivariate data, a key goal of middle-grades statistics curricula, is aided by a sequence of lessons.</description><subject>Bivariate analysis</subject><subject>Cognition & reasoning</subject><subject>Data</subject><subject>Data analysis</subject><subject>Data lines</subject><subject>Datasets</subject><subject>FEATURES</subject><subject>Grade 7</subject><subject>Grade 8</subject><subject>Graphs</subject><subject>Information retrieval noise</subject><subject>Line graphs</subject><subject>Mathematical data</subject><subject>Mathematics education</subject><subject>Mathematics Instruction</subject><subject>Middle schools</subject><subject>Noise</subject><subject>Prediction</subject><subject>Scores</subject><subject>Signal noise</subject><subject>Statistics</subject><subject>Students</subject><subject>Summer Programs</subject><subject>Test scores</subject><issn>1072-0839</issn><issn>2328-5486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNqVkM1OwzAQhC0EEqXwCEgRcE3w2nVic4NS_lTBBcTRcpwNdaF1sV0Qb0-qIA7cOO1h5ptZDSFHQAuhBJwuTJolNHbhmibamS8YL1hBqWRbZMA4k7kYyXKbDIBWLKeSq12yF-OcUgqsVANy8uzDq1u-ZJ8uzbJ77yJmbplduA8TnEmYXZpk9slOa94iHvzcIXm6mjyOb_Lpw_Xt-HyaW0ZLkVuJnIuSK14DYF03hoNBjkyMagOGS0SohSqZKKnlpvuuAcVKi0q2NbaKD8lxn7sK_n2NMem5X4dlV6lBVVUlhATRuc56lw0-xoCtXgW3MOFLA9WbVfTfVTTjmunNKh182MMYnP0FJ3cAohIUOr3q9XlMPvwn-RvGHHYG</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Groth, Randall E</creator><creator>Jones, Matthew</creator><creator>Knaub, Mary</creator><general>National Council of Teachers of Mathematics (NCTM)</general><general>National Council of Teachers of Mathematics</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20171001</creationdate><title>Working with Noise in Bivariate Data</title><author>Groth, Randall E ; Jones, Matthew ; Knaub, Mary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2065-c8e3356393b11ebbda31ae3e254ba1a38ee1b5962560c3a328d1926ce98fbef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bivariate analysis</topic><topic>Cognition & reasoning</topic><topic>Data</topic><topic>Data analysis</topic><topic>Data lines</topic><topic>Datasets</topic><topic>FEATURES</topic><topic>Grade 7</topic><topic>Grade 8</topic><topic>Graphs</topic><topic>Information retrieval noise</topic><topic>Line graphs</topic><topic>Mathematical data</topic><topic>Mathematics education</topic><topic>Mathematics Instruction</topic><topic>Middle schools</topic><topic>Noise</topic><topic>Prediction</topic><topic>Scores</topic><topic>Signal noise</topic><topic>Statistics</topic><topic>Students</topic><topic>Summer Programs</topic><topic>Test scores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groth, Randall E</creatorcontrib><creatorcontrib>Jones, Matthew</creatorcontrib><creatorcontrib>Knaub, Mary</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics teaching in the middle school</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groth, Randall E</au><au>Jones, Matthew</au><au>Knaub, Mary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1157501</ericid><atitle>Working with Noise in Bivariate Data</atitle><jtitle>Mathematics teaching in the middle school</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>23</volume><issue>2</issue><spage>82</spage><epage>89</epage><pages>82-89</pages><issn>1072-0839</issn><eissn>2328-5486</eissn><abstract>Learning to work with bivariate data, a key goal of middle-grades statistics curricula, is aided by a sequence of lessons.</abstract><cop>Reston</cop><pub>National Council of Teachers of Mathematics (NCTM)</pub><doi>10.5951/mathteacmiddscho.23.2.0082</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-0839 |
ispartof | Mathematics teaching in the middle school, 2017-10, Vol.23 (2), p.82-89 |
issn | 1072-0839 2328-5486 |
language | eng |
recordid | cdi_proquest_journals_1977755815 |
source | ERIC; Access via JSTOR |
subjects | Bivariate analysis Cognition & reasoning Data Data analysis Data lines Datasets FEATURES Grade 7 Grade 8 Graphs Information retrieval noise Line graphs Mathematical data Mathematics education Mathematics Instruction Middle schools Noise Prediction Scores Signal noise Statistics Students Summer Programs Test scores |
title | Working with Noise in Bivariate Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Working%20with%20Noise%20in%20Bivariate%20Data&rft.jtitle=Mathematics%20teaching%20in%20the%20middle%20school&rft.au=Groth,%20Randall%20E&rft.date=2017-10-01&rft.volume=23&rft.issue=2&rft.spage=82&rft.epage=89&rft.pages=82-89&rft.issn=1072-0839&rft.eissn=2328-5486&rft_id=info:doi/10.5951/mathteacmiddscho.23.2.0082&rft_dat=%3Cjstor_proqu%3E10.5951/mathteacmiddscho.23.2.0082%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2065-c8e3356393b11ebbda31ae3e254ba1a38ee1b5962560c3a328d1926ce98fbef93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1977755815&rft_id=info:pmid/&rft_ericid=EJ1157501&rft_jstor_id=10.5951/mathteacmiddscho.23.2.0082&rfr_iscdi=true |