Loading…

An improvement on parametric -support vector algorithm for classification

One effective technique that has recently been considered for solving classification problems is parametric [Formula omitted]-support vector regression. This method obtains a concurrent learning framework for both margin determination and function approximation and leads to a convex quadratic progra...

Full description

Saved in:
Bibliographic Details
Published in:Annals of operations research 2019-05, Vol.276 (1-2), p.155-168
Main Authors: Ketabchi, Saeed, Moosaei, Hossein, Razzaghi, Mohamad, Pardalos, Panos M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 168
container_issue 1-2
container_start_page 155
container_title Annals of operations research
container_volume 276
creator Ketabchi, Saeed
Moosaei, Hossein
Razzaghi, Mohamad
Pardalos, Panos M
description One effective technique that has recently been considered for solving classification problems is parametric [Formula omitted]-support vector regression. This method obtains a concurrent learning framework for both margin determination and function approximation and leads to a convex quadratic programming problem. In this paper we introduce a new idea that converts this problem into an unconstrained convex problem. Moreover, we propose an extension of Newton's method for solving the unconstrained convex problem. We compare the accuracy and efficiency of our method with support vector machines and parametric [Formula omitted]-support vector regression methods. Experimental results on several UCI benchmark data sets indicate the high efficiency and accuracy of this method.
doi_str_mv 10.1007/s10479-017-2724-8
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1978149254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A581768034</galeid><sourcerecordid>A581768034</sourcerecordid><originalsourceid>FETCH-LOGICAL-g217t-46b9cd3ea2f55bd0007c6a0e23df81a6b65699682d26bf2b74ba2ea4a55ec1b73</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMouK7-AG8Fr2ZN0uajx2XxY2HBi55LmibdLG1Sk3R_vxEFV5A5DDM878w7A8AtRiuMEH-IGFW8hghzSDipoDgDC0w5gXVZinOwQIRWkJYlugRXMR4QQhgLugDbtSvsOAV_1KN2qfCumGSQo07BqgLGeZp8SMVRq-RDIYfeB5v2Y2FypQYZozVWyWS9uwYXRg5R3_zkJXh_enzbvMDd6_N2s97BnmCeYMXaWnWllsRQ2nbZCFdMIk3KzggsWcsoq2smSEdYa0jLq1YSLStJqVa45eUS3H3PzaY_Zh1Tc_BzcHllg2sucFXnU3-pXg66sc74FKQabVTNmgrMmUDlF7X6h8rR6dEq77Sxuf9HcH8iaOdonc4_cNH2-xR7Ocd4in8C_Z56tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978149254</pqid></control><display><type>article</type><title>An improvement on parametric -support vector algorithm for classification</title><source>Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Ketabchi, Saeed ; Moosaei, Hossein ; Razzaghi, Mohamad ; Pardalos, Panos M</creator><creatorcontrib>Ketabchi, Saeed ; Moosaei, Hossein ; Razzaghi, Mohamad ; Pardalos, Panos M</creatorcontrib><description>One effective technique that has recently been considered for solving classification problems is parametric [Formula omitted]-support vector regression. This method obtains a concurrent learning framework for both margin determination and function approximation and leads to a convex quadratic programming problem. In this paper we introduce a new idea that converts this problem into an unconstrained convex problem. Moreover, we propose an extension of Newton's method for solving the unconstrained convex problem. We compare the accuracy and efficiency of our method with support vector machines and parametric [Formula omitted]-support vector regression methods. Experimental results on several UCI benchmark data sets indicate the high efficiency and accuracy of this method.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-017-2724-8</identifier><language>eng</language><publisher>New York: Springer</publisher><subject>Analysis ; Classification ; Operations research ; Optimization theory ; Parametric equations ; Quadratic programming ; Studies ; Support vector machines</subject><ispartof>Annals of operations research, 2019-05, Vol.276 (1-2), p.155-168</ispartof><rights>COPYRIGHT 2019 Springer</rights><rights>Annals of Operations Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1978149254/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1978149254?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Ketabchi, Saeed</creatorcontrib><creatorcontrib>Moosaei, Hossein</creatorcontrib><creatorcontrib>Razzaghi, Mohamad</creatorcontrib><creatorcontrib>Pardalos, Panos M</creatorcontrib><title>An improvement on parametric -support vector algorithm for classification</title><title>Annals of operations research</title><description>One effective technique that has recently been considered for solving classification problems is parametric [Formula omitted]-support vector regression. This method obtains a concurrent learning framework for both margin determination and function approximation and leads to a convex quadratic programming problem. In this paper we introduce a new idea that converts this problem into an unconstrained convex problem. Moreover, we propose an extension of Newton's method for solving the unconstrained convex problem. We compare the accuracy and efficiency of our method with support vector machines and parametric [Formula omitted]-support vector regression methods. Experimental results on several UCI benchmark data sets indicate the high efficiency and accuracy of this method.</description><subject>Analysis</subject><subject>Classification</subject><subject>Operations research</subject><subject>Optimization theory</subject><subject>Parametric equations</subject><subject>Quadratic programming</subject><subject>Studies</subject><subject>Support vector machines</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNptkE1LxDAQhoMouK7-AG8Fr2ZN0uajx2XxY2HBi55LmibdLG1Sk3R_vxEFV5A5DDM878w7A8AtRiuMEH-IGFW8hghzSDipoDgDC0w5gXVZinOwQIRWkJYlugRXMR4QQhgLugDbtSvsOAV_1KN2qfCumGSQo07BqgLGeZp8SMVRq-RDIYfeB5v2Y2FypQYZozVWyWS9uwYXRg5R3_zkJXh_enzbvMDd6_N2s97BnmCeYMXaWnWllsRQ2nbZCFdMIk3KzggsWcsoq2smSEdYa0jLq1YSLStJqVa45eUS3H3PzaY_Zh1Tc_BzcHllg2sucFXnU3-pXg66sc74FKQabVTNmgrMmUDlF7X6h8rR6dEq77Sxuf9HcH8iaOdonc4_cNH2-xR7Ocd4in8C_Z56tw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Ketabchi, Saeed</creator><creator>Moosaei, Hossein</creator><creator>Razzaghi, Mohamad</creator><creator>Pardalos, Panos M</creator><general>Springer</general><general>Springer Nature B.V</general><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20190501</creationdate><title>An improvement on parametric -support vector algorithm for classification</title><author>Ketabchi, Saeed ; Moosaei, Hossein ; Razzaghi, Mohamad ; Pardalos, Panos M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g217t-46b9cd3ea2f55bd0007c6a0e23df81a6b65699682d26bf2b74ba2ea4a55ec1b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Classification</topic><topic>Operations research</topic><topic>Optimization theory</topic><topic>Parametric equations</topic><topic>Quadratic programming</topic><topic>Studies</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ketabchi, Saeed</creatorcontrib><creatorcontrib>Moosaei, Hossein</creatorcontrib><creatorcontrib>Razzaghi, Mohamad</creatorcontrib><creatorcontrib>Pardalos, Panos M</creatorcontrib><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ketabchi, Saeed</au><au>Moosaei, Hossein</au><au>Razzaghi, Mohamad</au><au>Pardalos, Panos M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improvement on parametric -support vector algorithm for classification</atitle><jtitle>Annals of operations research</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>276</volume><issue>1-2</issue><spage>155</spage><epage>168</epage><pages>155-168</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>One effective technique that has recently been considered for solving classification problems is parametric [Formula omitted]-support vector regression. This method obtains a concurrent learning framework for both margin determination and function approximation and leads to a convex quadratic programming problem. In this paper we introduce a new idea that converts this problem into an unconstrained convex problem. Moreover, we propose an extension of Newton's method for solving the unconstrained convex problem. We compare the accuracy and efficiency of our method with support vector machines and parametric [Formula omitted]-support vector regression methods. Experimental results on several UCI benchmark data sets indicate the high efficiency and accuracy of this method.</abstract><cop>New York</cop><pub>Springer</pub><doi>10.1007/s10479-017-2724-8</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2019-05, Vol.276 (1-2), p.155-168
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_journals_1978149254
source Business Source Ultimate; ABI/INFORM Global; Springer Nature
subjects Analysis
Classification
Operations research
Optimization theory
Parametric equations
Quadratic programming
Studies
Support vector machines
title An improvement on parametric -support vector algorithm for classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improvement%20on%20parametric%20-support%20vector%20algorithm%20for%20classification&rft.jtitle=Annals%20of%20operations%20research&rft.au=Ketabchi,%20Saeed&rft.date=2019-05-01&rft.volume=276&rft.issue=1-2&rft.spage=155&rft.epage=168&rft.pages=155-168&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-017-2724-8&rft_dat=%3Cgale_proqu%3EA581768034%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g217t-46b9cd3ea2f55bd0007c6a0e23df81a6b65699682d26bf2b74ba2ea4a55ec1b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1978149254&rft_id=info:pmid/&rft_galeid=A581768034&rfr_iscdi=true