Loading…

An Obstruction to Delaunay Triangulations in Riemannian Manifolds

Delaunay has shown that the Delaunay complex of a finite set of points P of Euclidean space R m triangulates the convex hull of P , provided that P satisfies a mild genericity property. Voronoi diagrams and Delaunay complexes can be defined for arbitrary Riemannian manifolds. However, Delaunay’s gen...

Full description

Saved in:
Bibliographic Details
Published in:Discrete & computational geometry 2018, Vol.59 (1), p.226-237
Main Authors: Boissonnat, Jean-Daniel, Dyer, Ramsay, Ghosh, Arijit, Martynchuk, Nikolay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-de42f03dd32c3b14362f44d91a7aacde434c67c1985d180ff3e2e038f3c6a46e3
cites cdi_FETCH-LOGICAL-c359t-de42f03dd32c3b14362f44d91a7aacde434c67c1985d180ff3e2e038f3c6a46e3
container_end_page 237
container_issue 1
container_start_page 226
container_title Discrete & computational geometry
container_volume 59
creator Boissonnat, Jean-Daniel
Dyer, Ramsay
Ghosh, Arijit
Martynchuk, Nikolay
description Delaunay has shown that the Delaunay complex of a finite set of points P of Euclidean space R m triangulates the convex hull of P , provided that P satisfies a mild genericity property. Voronoi diagrams and Delaunay complexes can be defined for arbitrary Riemannian manifolds. However, Delaunay’s genericity assumption no longer guarantees that the Delaunay complex will yield a triangulation; stronger assumptions on P are required. A natural one is to assume that P is sufficiently dense. Although results in this direction have been claimed, we show that sample density alone is insufficient to ensure that the Delaunay complex triangulates a manifold of dimension greater than 2.
doi_str_mv 10.1007/s00454-017-9908-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1978212633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1978212633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-de42f03dd32c3b14362f44d91a7aacde434c67c1985d180ff3e2e038f3c6a46e3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt_gLeA5-gkk_3IsdRPqBSknkOaTcqWbbYmuwf_e1PWgxdPA_N-783wCLnlcM8BqocEIAvJgFdMKahZcUZmXKJgIKU8J7MsKFZgVV6Sq5T2kPGMzchiEeh6m4Y42qHtAx16-ug6MwbzTTexNWE3duakJNoG-tG6gwkhr-m7Ca3vuyZdkwtvuuRufuecfD4_bZavbLV-eVsuVsxioQbWOCk8YNOgsLjNr5XCS9kobipjbFZR2rKyXNVFw2vwHp1wgLVHWxpZOpyTuyn3GPuv0aVB7_sxhnxSc1XVgosSMVN8omzsU4rO62NsDyZ-aw761JSemtK5EH1qShfZIyZPymzYufgn-V_TD4wka0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978212633</pqid></control><display><type>article</type><title>An Obstruction to Delaunay Triangulations in Riemannian Manifolds</title><source>Springer Link</source><creator>Boissonnat, Jean-Daniel ; Dyer, Ramsay ; Ghosh, Arijit ; Martynchuk, Nikolay</creator><creatorcontrib>Boissonnat, Jean-Daniel ; Dyer, Ramsay ; Ghosh, Arijit ; Martynchuk, Nikolay</creatorcontrib><description>Delaunay has shown that the Delaunay complex of a finite set of points P of Euclidean space R m triangulates the convex hull of P , provided that P satisfies a mild genericity property. Voronoi diagrams and Delaunay complexes can be defined for arbitrary Riemannian manifolds. However, Delaunay’s genericity assumption no longer guarantees that the Delaunay complex will yield a triangulation; stronger assumptions on P are required. A natural one is to assume that P is sufficiently dense. Although results in this direction have been claimed, we show that sample density alone is insufficient to ensure that the Delaunay complex triangulates a manifold of dimension greater than 2.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-017-9908-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Computational Mathematics and Numerical Analysis ; Euclidean geometry ; Euclidean space ; Manifolds (mathematics) ; Mathematics ; Mathematics and Statistics ; Riemann manifold ; Theorems ; Triangulation ; Voronoi graphs</subject><ispartof>Discrete &amp; computational geometry, 2018, Vol.59 (1), p.226-237</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Discrete &amp; Computational Geometry is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-de42f03dd32c3b14362f44d91a7aacde434c67c1985d180ff3e2e038f3c6a46e3</citedby><cites>FETCH-LOGICAL-c359t-de42f03dd32c3b14362f44d91a7aacde434c67c1985d180ff3e2e038f3c6a46e3</cites><orcidid>0000-0001-5083-7181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Boissonnat, Jean-Daniel</creatorcontrib><creatorcontrib>Dyer, Ramsay</creatorcontrib><creatorcontrib>Ghosh, Arijit</creatorcontrib><creatorcontrib>Martynchuk, Nikolay</creatorcontrib><title>An Obstruction to Delaunay Triangulations in Riemannian Manifolds</title><title>Discrete &amp; computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>Delaunay has shown that the Delaunay complex of a finite set of points P of Euclidean space R m triangulates the convex hull of P , provided that P satisfies a mild genericity property. Voronoi diagrams and Delaunay complexes can be defined for arbitrary Riemannian manifolds. However, Delaunay’s genericity assumption no longer guarantees that the Delaunay complex will yield a triangulation; stronger assumptions on P are required. A natural one is to assume that P is sufficiently dense. Although results in this direction have been claimed, we show that sample density alone is insufficient to ensure that the Delaunay complex triangulates a manifold of dimension greater than 2.</description><subject>Combinatorics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Manifolds (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann manifold</subject><subject>Theorems</subject><subject>Triangulation</subject><subject>Voronoi graphs</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt_gLeA5-gkk_3IsdRPqBSknkOaTcqWbbYmuwf_e1PWgxdPA_N-783wCLnlcM8BqocEIAvJgFdMKahZcUZmXKJgIKU8J7MsKFZgVV6Sq5T2kPGMzchiEeh6m4Y42qHtAx16-ug6MwbzTTexNWE3duakJNoG-tG6gwkhr-m7Ca3vuyZdkwtvuuRufuecfD4_bZavbLV-eVsuVsxioQbWOCk8YNOgsLjNr5XCS9kobipjbFZR2rKyXNVFw2vwHp1wgLVHWxpZOpyTuyn3GPuv0aVB7_sxhnxSc1XVgosSMVN8omzsU4rO62NsDyZ-aw761JSemtK5EH1qShfZIyZPymzYufgn-V_TD4wka0Q</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Boissonnat, Jean-Daniel</creator><creator>Dyer, Ramsay</creator><creator>Ghosh, Arijit</creator><creator>Martynchuk, Nikolay</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5083-7181</orcidid></search><sort><creationdate>2018</creationdate><title>An Obstruction to Delaunay Triangulations in Riemannian Manifolds</title><author>Boissonnat, Jean-Daniel ; Dyer, Ramsay ; Ghosh, Arijit ; Martynchuk, Nikolay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-de42f03dd32c3b14362f44d91a7aacde434c67c1985d180ff3e2e038f3c6a46e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Combinatorics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Manifolds (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann manifold</topic><topic>Theorems</topic><topic>Triangulation</topic><topic>Voronoi graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boissonnat, Jean-Daniel</creatorcontrib><creatorcontrib>Dyer, Ramsay</creatorcontrib><creatorcontrib>Ghosh, Arijit</creatorcontrib><creatorcontrib>Martynchuk, Nikolay</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boissonnat, Jean-Daniel</au><au>Dyer, Ramsay</au><au>Ghosh, Arijit</au><au>Martynchuk, Nikolay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Obstruction to Delaunay Triangulations in Riemannian Manifolds</atitle><jtitle>Discrete &amp; computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2018</date><risdate>2018</risdate><volume>59</volume><issue>1</issue><spage>226</spage><epage>237</epage><pages>226-237</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><abstract>Delaunay has shown that the Delaunay complex of a finite set of points P of Euclidean space R m triangulates the convex hull of P , provided that P satisfies a mild genericity property. Voronoi diagrams and Delaunay complexes can be defined for arbitrary Riemannian manifolds. However, Delaunay’s genericity assumption no longer guarantees that the Delaunay complex will yield a triangulation; stronger assumptions on P are required. A natural one is to assume that P is sufficiently dense. Although results in this direction have been claimed, we show that sample density alone is insufficient to ensure that the Delaunay complex triangulates a manifold of dimension greater than 2.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-017-9908-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5083-7181</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2018, Vol.59 (1), p.226-237
issn 0179-5376
1432-0444
language eng
recordid cdi_proquest_journals_1978212633
source Springer Link
subjects Combinatorics
Computational Mathematics and Numerical Analysis
Euclidean geometry
Euclidean space
Manifolds (mathematics)
Mathematics
Mathematics and Statistics
Riemann manifold
Theorems
Triangulation
Voronoi graphs
title An Obstruction to Delaunay Triangulations in Riemannian Manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Obstruction%20to%20Delaunay%20Triangulations%20in%20Riemannian%20Manifolds&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Boissonnat,%20Jean-Daniel&rft.date=2018&rft.volume=59&rft.issue=1&rft.spage=226&rft.epage=237&rft.pages=226-237&rft.issn=0179-5376&rft.eissn=1432-0444&rft_id=info:doi/10.1007/s00454-017-9908-5&rft_dat=%3Cproquest_cross%3E1978212633%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-de42f03dd32c3b14362f44d91a7aacde434c67c1985d180ff3e2e038f3c6a46e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1978212633&rft_id=info:pmid/&rfr_iscdi=true