Loading…
Data‐driven time–frequency analysis of seismic data using non‐stationary Prony method
ABSTRACT Empirical mode decomposition aims to decompose the input signal into a small number of components named intrinsic mode functions with slowly varying amplitudes and frequencies. In spite of its simplicity and usefulness, however, empirical mode decomposition lacks solid mathematical foundati...
Saved in:
Published in: | Geophysical Prospecting 2018-01, Vol.66 (1), p.85-97 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a3790-8a6a7b930a33b6a5c023de7e77cf0c3d8c2abb27b61227a6525b7c953d5d1ffd3 |
---|---|
cites | cdi_FETCH-LOGICAL-a3790-8a6a7b930a33b6a5c023de7e77cf0c3d8c2abb27b61227a6525b7c953d5d1ffd3 |
container_end_page | 97 |
container_issue | 1 |
container_start_page | 85 |
container_title | Geophysical Prospecting |
container_volume | 66 |
creator | Wu, Guoning Fomel, Sergey Chen, Yangkang |
description | ABSTRACT
Empirical mode decomposition aims to decompose the input signal into a small number of components named intrinsic mode functions with slowly varying amplitudes and frequencies. In spite of its simplicity and usefulness, however, empirical mode decomposition lacks solid mathematical foundation. In this paper, we describe a method to extract the intrinsic mode functions of the input signal using non‐stationary Prony method. The proposed method captures the philosophy of the empirical mode decomposition but uses a different method to compute the intrinsic mode functions. Having the intrinsic mode functions obtained, we then compute the spectrum of the input signal using Hilbert transform. Synthetic and field data validate that the proposed method can correctly compute the spectrum of the input signal and could be used in seismic data analysis to facilitate interpretation. |
doi_str_mv | 10.1111/1365-2478.12530 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1978213963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1978213963</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3790-8a6a7b930a33b6a5c023de7e77cf0c3d8c2abb27b61227a6525b7c953d5d1ffd3</originalsourceid><addsrcrecordid>eNqFkM1KAzEURoMoWKtrtwHX0-anmcwspWoVChbRlYuQSTKa0klqMlVm10cQfMM-iakjbr2bC5fvXD4OAOcYjXCaMaY5y8iEFyNMGEUHYPB3OQQDhHCeFYiwY3AS4xIhihibDMDzlWzlbvupg303Dra2MbvtVx3M28Y41UHp5KqLNkJfw2hsbKyCOiFwE617gc67BMdWttY7GTq4CN51sDHtq9en4KiWq2jOfvcQPN1cP05vs_n97G56Oc8k5SXKCplLXpUUSUqrXDKFCNWGG85VjRTVhSKyqgivckwIlzkjrOKqZFQzjeta0yG46P-ug0-1YyuWfhNS8ShwyQuCaZnTlBr3KRV8jMHUYh1skzoLjMTeoNj7Entf4sdgIlhPfNiV6f6Li9nioee-AVt8doo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978213963</pqid></control><display><type>article</type><title>Data‐driven time–frequency analysis of seismic data using non‐stationary Prony method</title><source>Wiley</source><creator>Wu, Guoning ; Fomel, Sergey ; Chen, Yangkang</creator><creatorcontrib>Wu, Guoning ; Fomel, Sergey ; Chen, Yangkang</creatorcontrib><description>ABSTRACT
Empirical mode decomposition aims to decompose the input signal into a small number of components named intrinsic mode functions with slowly varying amplitudes and frequencies. In spite of its simplicity and usefulness, however, empirical mode decomposition lacks solid mathematical foundation. In this paper, we describe a method to extract the intrinsic mode functions of the input signal using non‐stationary Prony method. The proposed method captures the philosophy of the empirical mode decomposition but uses a different method to compute the intrinsic mode functions. Having the intrinsic mode functions obtained, we then compute the spectrum of the input signal using Hilbert transform. Synthetic and field data validate that the proposed method can correctly compute the spectrum of the input signal and could be used in seismic data analysis to facilitate interpretation.</description><identifier>ISSN: 0016-8025</identifier><identifier>EISSN: 1365-2478</identifier><identifier>DOI: 10.1111/1365-2478.12530</identifier><language>eng</language><publisher>Houten: Wiley Subscription Services, Inc</publisher><subject>Bandwidths ; Data analysis ; Decomposition ; Empirical analysis ; Frequency analysis ; Functions (mathematics) ; Hilbert transform ; Hilbert transformation ; intrinsic mode function ; non‐stationary Prony method ; Philosophy ; Prony's method ; Seismic analysis ; Seismic data ; Time-frequency analysis</subject><ispartof>Geophysical Prospecting, 2018-01, Vol.66 (1), p.85-97</ispartof><rights>2017 European Association of Geoscientists & Engineers</rights><rights>2018 European Association of Geoscientists & Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3790-8a6a7b930a33b6a5c023de7e77cf0c3d8c2abb27b61227a6525b7c953d5d1ffd3</citedby><cites>FETCH-LOGICAL-a3790-8a6a7b930a33b6a5c023de7e77cf0c3d8c2abb27b61227a6525b7c953d5d1ffd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Guoning</creatorcontrib><creatorcontrib>Fomel, Sergey</creatorcontrib><creatorcontrib>Chen, Yangkang</creatorcontrib><title>Data‐driven time–frequency analysis of seismic data using non‐stationary Prony method</title><title>Geophysical Prospecting</title><description>ABSTRACT
Empirical mode decomposition aims to decompose the input signal into a small number of components named intrinsic mode functions with slowly varying amplitudes and frequencies. In spite of its simplicity and usefulness, however, empirical mode decomposition lacks solid mathematical foundation. In this paper, we describe a method to extract the intrinsic mode functions of the input signal using non‐stationary Prony method. The proposed method captures the philosophy of the empirical mode decomposition but uses a different method to compute the intrinsic mode functions. Having the intrinsic mode functions obtained, we then compute the spectrum of the input signal using Hilbert transform. Synthetic and field data validate that the proposed method can correctly compute the spectrum of the input signal and could be used in seismic data analysis to facilitate interpretation.</description><subject>Bandwidths</subject><subject>Data analysis</subject><subject>Decomposition</subject><subject>Empirical analysis</subject><subject>Frequency analysis</subject><subject>Functions (mathematics)</subject><subject>Hilbert transform</subject><subject>Hilbert transformation</subject><subject>intrinsic mode function</subject><subject>non‐stationary Prony method</subject><subject>Philosophy</subject><subject>Prony's method</subject><subject>Seismic analysis</subject><subject>Seismic data</subject><subject>Time-frequency analysis</subject><issn>0016-8025</issn><issn>1365-2478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEURoMoWKtrtwHX0-anmcwspWoVChbRlYuQSTKa0klqMlVm10cQfMM-iakjbr2bC5fvXD4OAOcYjXCaMaY5y8iEFyNMGEUHYPB3OQQDhHCeFYiwY3AS4xIhihibDMDzlWzlbvupg303Dra2MbvtVx3M28Y41UHp5KqLNkJfw2hsbKyCOiFwE617gc67BMdWttY7GTq4CN51sDHtq9en4KiWq2jOfvcQPN1cP05vs_n97G56Oc8k5SXKCplLXpUUSUqrXDKFCNWGG85VjRTVhSKyqgivckwIlzkjrOKqZFQzjeta0yG46P-ug0-1YyuWfhNS8ShwyQuCaZnTlBr3KRV8jMHUYh1skzoLjMTeoNj7Entf4sdgIlhPfNiV6f6Li9nioee-AVt8doo</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Wu, Guoning</creator><creator>Fomel, Sergey</creator><creator>Chen, Yangkang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>201801</creationdate><title>Data‐driven time–frequency analysis of seismic data using non‐stationary Prony method</title><author>Wu, Guoning ; Fomel, Sergey ; Chen, Yangkang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3790-8a6a7b930a33b6a5c023de7e77cf0c3d8c2abb27b61227a6525b7c953d5d1ffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bandwidths</topic><topic>Data analysis</topic><topic>Decomposition</topic><topic>Empirical analysis</topic><topic>Frequency analysis</topic><topic>Functions (mathematics)</topic><topic>Hilbert transform</topic><topic>Hilbert transformation</topic><topic>intrinsic mode function</topic><topic>non‐stationary Prony method</topic><topic>Philosophy</topic><topic>Prony's method</topic><topic>Seismic analysis</topic><topic>Seismic data</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Guoning</creatorcontrib><creatorcontrib>Fomel, Sergey</creatorcontrib><creatorcontrib>Chen, Yangkang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geophysical Prospecting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Guoning</au><au>Fomel, Sergey</au><au>Chen, Yangkang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data‐driven time–frequency analysis of seismic data using non‐stationary Prony method</atitle><jtitle>Geophysical Prospecting</jtitle><date>2018-01</date><risdate>2018</risdate><volume>66</volume><issue>1</issue><spage>85</spage><epage>97</epage><pages>85-97</pages><issn>0016-8025</issn><eissn>1365-2478</eissn><abstract>ABSTRACT
Empirical mode decomposition aims to decompose the input signal into a small number of components named intrinsic mode functions with slowly varying amplitudes and frequencies. In spite of its simplicity and usefulness, however, empirical mode decomposition lacks solid mathematical foundation. In this paper, we describe a method to extract the intrinsic mode functions of the input signal using non‐stationary Prony method. The proposed method captures the philosophy of the empirical mode decomposition but uses a different method to compute the intrinsic mode functions. Having the intrinsic mode functions obtained, we then compute the spectrum of the input signal using Hilbert transform. Synthetic and field data validate that the proposed method can correctly compute the spectrum of the input signal and could be used in seismic data analysis to facilitate interpretation.</abstract><cop>Houten</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2478.12530</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-8025 |
ispartof | Geophysical Prospecting, 2018-01, Vol.66 (1), p.85-97 |
issn | 0016-8025 1365-2478 |
language | eng |
recordid | cdi_proquest_journals_1978213963 |
source | Wiley |
subjects | Bandwidths Data analysis Decomposition Empirical analysis Frequency analysis Functions (mathematics) Hilbert transform Hilbert transformation intrinsic mode function non‐stationary Prony method Philosophy Prony's method Seismic analysis Seismic data Time-frequency analysis |
title | Data‐driven time–frequency analysis of seismic data using non‐stationary Prony method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%E2%80%90driven%20time%E2%80%93frequency%20analysis%20of%20seismic%20data%20using%20non%E2%80%90stationary%20Prony%20method&rft.jtitle=Geophysical%20Prospecting&rft.au=Wu,%20Guoning&rft.date=2018-01&rft.volume=66&rft.issue=1&rft.spage=85&rft.epage=97&rft.pages=85-97&rft.issn=0016-8025&rft.eissn=1365-2478&rft_id=info:doi/10.1111/1365-2478.12530&rft_dat=%3Cproquest_cross%3E1978213963%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3790-8a6a7b930a33b6a5c023de7e77cf0c3d8c2abb27b61227a6525b7c953d5d1ffd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1978213963&rft_id=info:pmid/&rfr_iscdi=true |