Loading…
Extension Problems Related to the Higher Order Fractional Laplacian
Abstract Caffarelli and Silvestre [Comm. Part. Diff. Eqs., 32, 1245-1260 (2007)] characterized the fractional Laplacian (-△)s as an operator maps Dirichlet boundary condition to Neumann condition via the harmonic extension problem to the upper half space for 0 〈 s 〈 1. In this paper, we extend this...
Saved in:
Published in: | Acta mathematica Sinica. English series 2018-04, Vol.34 (4), p.655-661 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Caffarelli and Silvestre [Comm. Part. Diff. Eqs., 32, 1245-1260 (2007)] characterized the fractional Laplacian (-△)s as an operator maps Dirichlet boundary condition to Neumann condition via the harmonic extension problem to the upper half space for 0 〈 s 〈 1. In this paper, we extend this result to all s 〉 0. We also give a new proof to the dissipative a priori estimate of quasi-geostrophic equations in the framework of Lp norm using the Caffarelli-Silvestre's extension technique. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-017-7325-6 |