Loading…

Extension Problems Related to the Higher Order Fractional Laplacian

Abstract Caffarelli and Silvestre [Comm. Part. Diff. Eqs., 32, 1245-1260 (2007)] characterized the fractional Laplacian (-△)s as an operator maps Dirichlet boundary condition to Neumann condition via the harmonic extension problem to the upper half space for 0 〈 s 〈 1. In this paper, we extend this...

Full description

Saved in:
Bibliographic Details
Published in:Acta mathematica Sinica. English series 2018-04, Vol.34 (4), p.655-661
Main Authors: Chen, Yu Kang, Lei, Zhen, Wei, Chang Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-16996605946fa5867febea62626facd6ab66642d11725140ec322d2870df64a83
cites cdi_FETCH-LOGICAL-c343t-16996605946fa5867febea62626facd6ab66642d11725140ec322d2870df64a83
container_end_page 661
container_issue 4
container_start_page 655
container_title Acta mathematica Sinica. English series
container_volume 34
creator Chen, Yu Kang
Lei, Zhen
Wei, Chang Hua
description Abstract Caffarelli and Silvestre [Comm. Part. Diff. Eqs., 32, 1245-1260 (2007)] characterized the fractional Laplacian (-△)s as an operator maps Dirichlet boundary condition to Neumann condition via the harmonic extension problem to the upper half space for 0 〈 s 〈 1. In this paper, we extend this result to all s 〉 0. We also give a new proof to the dissipative a priori estimate of quasi-geostrophic equations in the framework of Lp norm using the Caffarelli-Silvestre's extension technique.
doi_str_mv 10.1007/s10114-017-7325-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1979063301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674758478</cqvip_id><sourcerecordid>1979063301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-16996605946fa5867febea62626facd6ab66642d11725140ec322d2870df64a83</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgrf4Ab4ueVzN5THaPUqoVChXRc0h3s-2W7aZNUtB_b8oW8SQDM3P4HjMfIbdAH4BS9RiAAoicgsoVZzLHMzICwctcIajz015IwEtyFcKGUilLiiMymX5F24fW9dmbd8vObkP2bjsTbZ1Fl8W1zWbtam19tvB16s_eVDGhTZfNza4zVWv6a3LRmC7Ym9Mck8_n6cdkls8XL6-Tp3leccFjDliWiFSWAhsjC1SNXVqDLFVjqhrNEhEFqwEUkyCorThjNSsUrRsUpuBjcj_o7rzbH2yIeuMOPp0SNJQqvcM5hYSCAVV5F4K3jd75dmv8twaqj1npISudstLHrDQmDhs4IWH7lfV_lP8h3Z2M1q5f7RPv1wmVULIQquA_esl1sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979063301</pqid></control><display><type>article</type><title>Extension Problems Related to the Higher Order Fractional Laplacian</title><source>ABI/INFORM global</source><source>Springer Link</source><creator>Chen, Yu Kang ; Lei, Zhen ; Wei, Chang Hua</creator><creatorcontrib>Chen, Yu Kang ; Lei, Zhen ; Wei, Chang Hua</creatorcontrib><description>Abstract Caffarelli and Silvestre [Comm. Part. Diff. Eqs., 32, 1245-1260 (2007)] characterized the fractional Laplacian (-△)s as an operator maps Dirichlet boundary condition to Neumann condition via the harmonic extension problem to the upper half space for 0 〈 s 〈 1. In this paper, we extend this result to all s 〉 0. We also give a new proof to the dissipative a priori estimate of quasi-geostrophic equations in the framework of Lp norm using the Caffarelli-Silvestre's extension technique.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-017-7325-6</identifier><language>eng</language><publisher>Beijing: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Boundary conditions ; Dirichlet problem ; Laplace transforms ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; 拉普拉斯算符;延期;Dirichlet;Neumann;扩展问题;地球自转;操作符;空格</subject><ispartof>Acta mathematica Sinica. English series, 2018-04, Vol.34 (4), p.655-661</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Acta Mathematica Sinica, English Series is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-16996605946fa5867febea62626facd6ab66642d11725140ec322d2870df64a83</citedby><cites>FETCH-LOGICAL-c343t-16996605946fa5867febea62626facd6ab66642d11725140ec322d2870df64a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1979063301?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339</link.rule.ids></links><search><creatorcontrib>Chen, Yu Kang</creatorcontrib><creatorcontrib>Lei, Zhen</creatorcontrib><creatorcontrib>Wei, Chang Hua</creatorcontrib><title>Extension Problems Related to the Higher Order Fractional Laplacian</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>Abstract Caffarelli and Silvestre [Comm. Part. Diff. Eqs., 32, 1245-1260 (2007)] characterized the fractional Laplacian (-△)s as an operator maps Dirichlet boundary condition to Neumann condition via the harmonic extension problem to the upper half space for 0 〈 s 〈 1. In this paper, we extend this result to all s 〉 0. We also give a new proof to the dissipative a priori estimate of quasi-geostrophic equations in the framework of Lp norm using the Caffarelli-Silvestre's extension technique.</description><subject>Boundary conditions</subject><subject>Dirichlet problem</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>拉普拉斯算符;延期;Dirichlet;Neumann;扩展问题;地球自转;操作符;空格</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9UEtLAzEQDqJgrf4Ab4ueVzN5THaPUqoVChXRc0h3s-2W7aZNUtB_b8oW8SQDM3P4HjMfIbdAH4BS9RiAAoicgsoVZzLHMzICwctcIajz015IwEtyFcKGUilLiiMymX5F24fW9dmbd8vObkP2bjsTbZ1Fl8W1zWbtam19tvB16s_eVDGhTZfNza4zVWv6a3LRmC7Ym9Mck8_n6cdkls8XL6-Tp3leccFjDliWiFSWAhsjC1SNXVqDLFVjqhrNEhEFqwEUkyCorThjNSsUrRsUpuBjcj_o7rzbH2yIeuMOPp0SNJQqvcM5hYSCAVV5F4K3jd75dmv8twaqj1npISudstLHrDQmDhs4IWH7lfV_lP8h3Z2M1q5f7RPv1wmVULIQquA_esl1sQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Chen, Yu Kang</creator><creator>Lei, Zhen</creator><creator>Wei, Chang Hua</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180401</creationdate><title>Extension Problems Related to the Higher Order Fractional Laplacian</title><author>Chen, Yu Kang ; Lei, Zhen ; Wei, Chang Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-16996605946fa5867febea62626facd6ab66642d11725140ec322d2870df64a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary conditions</topic><topic>Dirichlet problem</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>拉普拉斯算符;延期;Dirichlet;Neumann;扩展问题;地球自转;操作符;空格</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yu Kang</creatorcontrib><creatorcontrib>Lei, Zhen</creatorcontrib><creatorcontrib>Wei, Chang Hua</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yu Kang</au><au>Lei, Zhen</au><au>Wei, Chang Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension Problems Related to the Higher Order Fractional Laplacian</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>34</volume><issue>4</issue><spage>655</spage><epage>661</epage><pages>655-661</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>Abstract Caffarelli and Silvestre [Comm. Part. Diff. Eqs., 32, 1245-1260 (2007)] characterized the fractional Laplacian (-△)s as an operator maps Dirichlet boundary condition to Neumann condition via the harmonic extension problem to the upper half space for 0 〈 s 〈 1. In this paper, we extend this result to all s 〉 0. We also give a new proof to the dissipative a priori estimate of quasi-geostrophic equations in the framework of Lp norm using the Caffarelli-Silvestre's extension technique.</abstract><cop>Beijing</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-017-7325-6</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2018-04, Vol.34 (4), p.655-661
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_journals_1979063301
source ABI/INFORM global; Springer Link
subjects Boundary conditions
Dirichlet problem
Laplace transforms
Mathematical analysis
Mathematics
Mathematics and Statistics
拉普拉斯算符
延期
Dirichlet
Neumann
扩展问题
地球自转
操作符
空格
title Extension Problems Related to the Higher Order Fractional Laplacian
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20Problems%20Related%20to%20the%20Higher%20Order%20Fractional%20Laplacian&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Chen,%20Yu%20Kang&rft.date=2018-04-01&rft.volume=34&rft.issue=4&rft.spage=655&rft.epage=661&rft.pages=655-661&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-017-7325-6&rft_dat=%3Cproquest_cross%3E1979063301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-16996605946fa5867febea62626facd6ab66642d11725140ec322d2870df64a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1979063301&rft_id=info:pmid/&rft_cqvip_id=674758478&rfr_iscdi=true