Loading…
Extension Problems Related to the Higher Order Fractional Laplacian
Abstract Caffarelli and Silvestre [Comm. Part. Diff. Eqs., 32, 1245-1260 (2007)] characterized the fractional Laplacian (-△)s as an operator maps Dirichlet boundary condition to Neumann condition via the harmonic extension problem to the upper half space for 0 〈 s 〈 1. In this paper, we extend this...
Saved in:
Published in: | Acta mathematica Sinica. English series 2018-04, Vol.34 (4), p.655-661 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-16996605946fa5867febea62626facd6ab66642d11725140ec322d2870df64a83 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-16996605946fa5867febea62626facd6ab66642d11725140ec322d2870df64a83 |
container_end_page | 661 |
container_issue | 4 |
container_start_page | 655 |
container_title | Acta mathematica Sinica. English series |
container_volume | 34 |
creator | Chen, Yu Kang Lei, Zhen Wei, Chang Hua |
description | Abstract Caffarelli and Silvestre [Comm. Part. Diff. Eqs., 32, 1245-1260 (2007)] characterized the fractional Laplacian (-△)s as an operator maps Dirichlet boundary condition to Neumann condition via the harmonic extension problem to the upper half space for 0 〈 s 〈 1. In this paper, we extend this result to all s 〉 0. We also give a new proof to the dissipative a priori estimate of quasi-geostrophic equations in the framework of Lp norm using the Caffarelli-Silvestre's extension technique. |
doi_str_mv | 10.1007/s10114-017-7325-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1979063301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674758478</cqvip_id><sourcerecordid>1979063301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-16996605946fa5867febea62626facd6ab66642d11725140ec322d2870df64a83</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgrf4Ab4ueVzN5THaPUqoVChXRc0h3s-2W7aZNUtB_b8oW8SQDM3P4HjMfIbdAH4BS9RiAAoicgsoVZzLHMzICwctcIajz015IwEtyFcKGUilLiiMymX5F24fW9dmbd8vObkP2bjsTbZ1Fl8W1zWbtam19tvB16s_eVDGhTZfNza4zVWv6a3LRmC7Ym9Mck8_n6cdkls8XL6-Tp3leccFjDliWiFSWAhsjC1SNXVqDLFVjqhrNEhEFqwEUkyCorThjNSsUrRsUpuBjcj_o7rzbH2yIeuMOPp0SNJQqvcM5hYSCAVV5F4K3jd75dmv8twaqj1npISudstLHrDQmDhs4IWH7lfV_lP8h3Z2M1q5f7RPv1wmVULIQquA_esl1sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979063301</pqid></control><display><type>article</type><title>Extension Problems Related to the Higher Order Fractional Laplacian</title><source>ABI/INFORM global</source><source>Springer Link</source><creator>Chen, Yu Kang ; Lei, Zhen ; Wei, Chang Hua</creator><creatorcontrib>Chen, Yu Kang ; Lei, Zhen ; Wei, Chang Hua</creatorcontrib><description>Abstract Caffarelli and Silvestre [Comm. Part. Diff. Eqs., 32, 1245-1260 (2007)] characterized the fractional Laplacian (-△)s as an operator maps Dirichlet boundary condition to Neumann condition via the harmonic extension problem to the upper half space for 0 〈 s 〈 1. In this paper, we extend this result to all s 〉 0. We also give a new proof to the dissipative a priori estimate of quasi-geostrophic equations in the framework of Lp norm using the Caffarelli-Silvestre's extension technique.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-017-7325-6</identifier><language>eng</language><publisher>Beijing: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Boundary conditions ; Dirichlet problem ; Laplace transforms ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; 拉普拉斯算符;延期;Dirichlet;Neumann;扩展问题;地球自转;操作符;空格</subject><ispartof>Acta mathematica Sinica. English series, 2018-04, Vol.34 (4), p.655-661</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Acta Mathematica Sinica, English Series is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-16996605946fa5867febea62626facd6ab66642d11725140ec322d2870df64a83</citedby><cites>FETCH-LOGICAL-c343t-16996605946fa5867febea62626facd6ab66642d11725140ec322d2870df64a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1979063301?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339</link.rule.ids></links><search><creatorcontrib>Chen, Yu Kang</creatorcontrib><creatorcontrib>Lei, Zhen</creatorcontrib><creatorcontrib>Wei, Chang Hua</creatorcontrib><title>Extension Problems Related to the Higher Order Fractional Laplacian</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>Abstract Caffarelli and Silvestre [Comm. Part. Diff. Eqs., 32, 1245-1260 (2007)] characterized the fractional Laplacian (-△)s as an operator maps Dirichlet boundary condition to Neumann condition via the harmonic extension problem to the upper half space for 0 〈 s 〈 1. In this paper, we extend this result to all s 〉 0. We also give a new proof to the dissipative a priori estimate of quasi-geostrophic equations in the framework of Lp norm using the Caffarelli-Silvestre's extension technique.</description><subject>Boundary conditions</subject><subject>Dirichlet problem</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>拉普拉斯算符;延期;Dirichlet;Neumann;扩展问题;地球自转;操作符;空格</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9UEtLAzEQDqJgrf4Ab4ueVzN5THaPUqoVChXRc0h3s-2W7aZNUtB_b8oW8SQDM3P4HjMfIbdAH4BS9RiAAoicgsoVZzLHMzICwctcIajz015IwEtyFcKGUilLiiMymX5F24fW9dmbd8vObkP2bjsTbZ1Fl8W1zWbtam19tvB16s_eVDGhTZfNza4zVWv6a3LRmC7Ym9Mck8_n6cdkls8XL6-Tp3leccFjDliWiFSWAhsjC1SNXVqDLFVjqhrNEhEFqwEUkyCorThjNSsUrRsUpuBjcj_o7rzbH2yIeuMOPp0SNJQqvcM5hYSCAVV5F4K3jd75dmv8twaqj1npISudstLHrDQmDhs4IWH7lfV_lP8h3Z2M1q5f7RPv1wmVULIQquA_esl1sQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Chen, Yu Kang</creator><creator>Lei, Zhen</creator><creator>Wei, Chang Hua</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180401</creationdate><title>Extension Problems Related to the Higher Order Fractional Laplacian</title><author>Chen, Yu Kang ; Lei, Zhen ; Wei, Chang Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-16996605946fa5867febea62626facd6ab66642d11725140ec322d2870df64a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary conditions</topic><topic>Dirichlet problem</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>拉普拉斯算符;延期;Dirichlet;Neumann;扩展问题;地球自转;操作符;空格</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yu Kang</creatorcontrib><creatorcontrib>Lei, Zhen</creatorcontrib><creatorcontrib>Wei, Chang Hua</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yu Kang</au><au>Lei, Zhen</au><au>Wei, Chang Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension Problems Related to the Higher Order Fractional Laplacian</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>34</volume><issue>4</issue><spage>655</spage><epage>661</epage><pages>655-661</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>Abstract Caffarelli and Silvestre [Comm. Part. Diff. Eqs., 32, 1245-1260 (2007)] characterized the fractional Laplacian (-△)s as an operator maps Dirichlet boundary condition to Neumann condition via the harmonic extension problem to the upper half space for 0 〈 s 〈 1. In this paper, we extend this result to all s 〉 0. We also give a new proof to the dissipative a priori estimate of quasi-geostrophic equations in the framework of Lp norm using the Caffarelli-Silvestre's extension technique.</abstract><cop>Beijing</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-017-7325-6</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-8516 |
ispartof | Acta mathematica Sinica. English series, 2018-04, Vol.34 (4), p.655-661 |
issn | 1439-8516 1439-7617 |
language | eng |
recordid | cdi_proquest_journals_1979063301 |
source | ABI/INFORM global; Springer Link |
subjects | Boundary conditions Dirichlet problem Laplace transforms Mathematical analysis Mathematics Mathematics and Statistics 拉普拉斯算符 延期 Dirichlet Neumann 扩展问题 地球自转 操作符 空格 |
title | Extension Problems Related to the Higher Order Fractional Laplacian |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20Problems%20Related%20to%20the%20Higher%20Order%20Fractional%20Laplacian&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Chen,%20Yu%20Kang&rft.date=2018-04-01&rft.volume=34&rft.issue=4&rft.spage=655&rft.epage=661&rft.pages=655-661&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-017-7325-6&rft_dat=%3Cproquest_cross%3E1979063301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-16996605946fa5867febea62626facd6ab66642d11725140ec322d2870df64a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1979063301&rft_id=info:pmid/&rft_cqvip_id=674758478&rfr_iscdi=true |