Loading…
Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light
Transparent dye-sensitized solar cells (DSSCs) can be coupled within a building's architecture to provide daylighting and electrical power simultaneously. In this work, the relationship between the transparency and performance of DSSCs is studied by changing the TiO2 electrode thickness. The 10...
Saved in:
Published in: | Solar energy materials and solar cells 2018-02, Vol.175, p.29-34 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transparent dye-sensitized solar cells (DSSCs) can be coupled within a building's architecture to provide daylighting and electrical power simultaneously. In this work, the relationship between the transparency and performance of DSSCs is studied by changing the TiO2 electrode thickness. The 10µm thickness device shows a power conversion efficiency of 5.93% and a Jsc of 12.75mA/cm2 with 37% transparency in the visible range. However, the performance loss in DSSCs during the scale up process is a potential drawback. This can be addressed using an optical concentrator with DSSC to generate more power from small size devices. Here, a compound parabolic concentrator (CPC) is coupled with DSSCs and its performance is compared to a scaled-up device (approx. 4 times). Furthermore, the impact of operating temperature on the performance of the bare and concentrator-coupled devices is discussed in this article. An increase of 67% in power conversion efficiency is observed at 36°C for the concentrator-coupled device under 1000W/m2 illumination. Maximum Jsc of 25.55mA/cm2 is achieved at 40°C for the concentrated coupled device compare with the Jsc of 13.06mA/cm2 for the bare cell at the same temperature.
•The relationship between thickness and transparency of the DSSCs.•Comparison of the photovoltaic performance of bare and low concentrator coupled transparent devices.•Scaling up of DSSCs and its performance comparison with low concentrated coupled devices.•Impact of device operating temperature on the photovoltaic performance for bare and concentrator coupled cells. |
---|---|
ISSN: | 0927-0248 1879-3398 |
DOI: | 10.1016/j.solmat.2017.10.006 |