Loading…
Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data
Aortic dissection (AD) is a vascular condition with high morbidity and mortality rates. Computational fluid dynamics (CFD) can provide insight into the progression of AD and aid clinical decisions; however, oversimplified modelling assumptions and high computational cost compromise the accuracy of t...
Saved in:
Published in: | Journal of the Royal Society interface 2017-11, Vol.14 (136), p.20170632-20170632 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c528t-5965a27fb10271fe74750f17bda22b55d7c95d8180bab4a34b85ab1a56ce2b3e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c528t-5965a27fb10271fe74750f17bda22b55d7c95d8180bab4a34b85ab1a56ce2b3e3 |
container_end_page | 20170632 |
container_issue | 136 |
container_start_page | 20170632 |
container_title | Journal of the Royal Society interface |
container_volume | 14 |
creator | Bonfanti, Mirko Balabani, Stavroula Greenwood, John P. Puppala, Sapna Homer-Vanniasinkam, Shervanthi Díaz-Zuccarini, Vanessa |
description | Aortic dissection (AD) is a vascular condition with high morbidity and mortality rates. Computational fluid dynamics (CFD) can provide insight into the progression of AD and aid clinical decisions; however, oversimplified modelling assumptions and high computational cost compromise the accuracy of the information and impede clinical translation. To overcome these limitations, a patient-specific CFD multi-scale approach coupled to Windkessel boundary conditions and accounting for wall compliance was developed and used to study a patient with AD. A new moving boundary algorithm was implemented to capture wall displacement and a rich in vivo clinical dataset was used to tune model parameters and for validation. Comparisons between in silico and in vivo data showed that this approach successfully captures flow and pressure waves for the patient-specific AD and is able to predict the pressure in the false lumen (FL), a critical variable for the clinical management of the condition. Results showed regions of low and oscillatory wall shear stress which, together with higher diastolic pressures predicted in the FL, may indicate risk of expansion. This study, at the interface of engineering and medicine, demonstrates a relatively simple and computationally efficient approach to account for arterial deformation and wave propagation phenomena in a three-dimensional model of AD, representing a step forward in the use of CFD as a potential tool for AD management and clinical support. |
doi_str_mv | 10.1098/rsif.2017.0632 |
format | article |
fullrecord | <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_proquest_journals_1984380309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962428040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-5965a27fb10271fe74750f17bda22b55d7c95d8180bab4a34b85ab1a56ce2b3e3</originalsourceid><addsrcrecordid>eNptkcFu1DAQhiMEoqVw5YgsceGSxXbi2OGAhFYtIFXiAmdr7DhbV0682E6lfRmelUm3rApCsmR75pt_xv6r6jWjG0Z79T5lP244ZXJDu4Y_qc6ZbHktuo4_PZ1Vf1a9yPmW0kY2QjyvznjPmGJMnFe_tnHaLwWKjzMEUmIMmYwxERv87C2G8rLfx1Q-ECDTEoqvM0YdsVgXPMyFTHFw4b7mBhxeDjNM3pLsEb_XzcTPBHChDCYGn7Oza4IYyG4geDgqYzE29BPs_LwjAxR4WT0bIWT36mG_qH5cXX7ffqmvv33-uv10XVvBValF3wngcjSMcslGJ1sp6MikGYBzI8QgbS8GxRQ1YFpoWqMEGAais46bxjUX1cej7n4xkxusm0uCoPcJh0kHHcHrvzOzv9G7eKeF5Ix1EgXePQik-HNxuejJZ-tCgNnFJWvWd7zlirYU0bf_oLdxSfj7K6XaRtGG9khtjpRNMefkxtMwjOrVer1ar1fr9Wo9Frx5_IQT_sdrBJojkOIBm0XrXTk86v1_2d9rlsB6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984380309</pqid></control><display><type>article</type><title>Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data</title><source>PubMed Central</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Bonfanti, Mirko ; Balabani, Stavroula ; Greenwood, John P. ; Puppala, Sapna ; Homer-Vanniasinkam, Shervanthi ; Díaz-Zuccarini, Vanessa</creator><creatorcontrib>Bonfanti, Mirko ; Balabani, Stavroula ; Greenwood, John P. ; Puppala, Sapna ; Homer-Vanniasinkam, Shervanthi ; Díaz-Zuccarini, Vanessa</creatorcontrib><description>Aortic dissection (AD) is a vascular condition with high morbidity and mortality rates. Computational fluid dynamics (CFD) can provide insight into the progression of AD and aid clinical decisions; however, oversimplified modelling assumptions and high computational cost compromise the accuracy of the information and impede clinical translation. To overcome these limitations, a patient-specific CFD multi-scale approach coupled to Windkessel boundary conditions and accounting for wall compliance was developed and used to study a patient with AD. A new moving boundary algorithm was implemented to capture wall displacement and a rich in vivo clinical dataset was used to tune model parameters and for validation. Comparisons between in silico and in vivo data showed that this approach successfully captures flow and pressure waves for the patient-specific AD and is able to predict the pressure in the false lumen (FL), a critical variable for the clinical management of the condition. Results showed regions of low and oscillatory wall shear stress which, together with higher diastolic pressures predicted in the FL, may indicate risk of expansion. This study, at the interface of engineering and medicine, demonstrates a relatively simple and computationally efficient approach to account for arterial deformation and wave propagation phenomena in a three-dimensional model of AD, representing a step forward in the use of CFD as a potential tool for AD management and clinical support.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2017.0632</identifier><identifier>PMID: 29118115</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Aged ; Aneurysm, Dissecting - pathology ; Aneurysm, Dissecting - physiopathology ; Aorta ; Aortic Dissection ; Blood Pressure ; Boundary conditions ; Computational efficiency ; Computational Fluid Dynamics ; Computer applications ; Computer Simulation ; Deformation ; Dissection ; Elastic waves ; Fluid dynamics ; Fluid–structure Interaction ; Humans ; Hydrodynamics ; Life Sciences–Engineering interface ; Male ; Mathematical models ; Models, Cardiovascular ; Morbidity ; Moving Boundary ; Patient-Specific Simulation ; Precision Medicine ; Pressure ; Shear stress ; Software ; Three dimensional models ; Wave propagation ; Windkessel Model</subject><ispartof>Journal of the Royal Society interface, 2017-11, Vol.14 (136), p.20170632-20170632</ispartof><rights>2017 The Authors.</rights><rights>2017 The Author(s).</rights><rights>Copyright The Royal Society Publishing Nov 2017</rights><rights>2017 The Authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-5965a27fb10271fe74750f17bda22b55d7c95d8180bab4a34b85ab1a56ce2b3e3</citedby><cites>FETCH-LOGICAL-c528t-5965a27fb10271fe74750f17bda22b55d7c95d8180bab4a34b85ab1a56ce2b3e3</cites><orcidid>0000-0001-5548-3298 ; 0000-0002-6287-1106 ; 0000-0002-2861-0914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721167/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721167/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29118115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonfanti, Mirko</creatorcontrib><creatorcontrib>Balabani, Stavroula</creatorcontrib><creatorcontrib>Greenwood, John P.</creatorcontrib><creatorcontrib>Puppala, Sapna</creatorcontrib><creatorcontrib>Homer-Vanniasinkam, Shervanthi</creatorcontrib><creatorcontrib>Díaz-Zuccarini, Vanessa</creatorcontrib><title>Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J R Soc Interface</addtitle><description>Aortic dissection (AD) is a vascular condition with high morbidity and mortality rates. Computational fluid dynamics (CFD) can provide insight into the progression of AD and aid clinical decisions; however, oversimplified modelling assumptions and high computational cost compromise the accuracy of the information and impede clinical translation. To overcome these limitations, a patient-specific CFD multi-scale approach coupled to Windkessel boundary conditions and accounting for wall compliance was developed and used to study a patient with AD. A new moving boundary algorithm was implemented to capture wall displacement and a rich in vivo clinical dataset was used to tune model parameters and for validation. Comparisons between in silico and in vivo data showed that this approach successfully captures flow and pressure waves for the patient-specific AD and is able to predict the pressure in the false lumen (FL), a critical variable for the clinical management of the condition. Results showed regions of low and oscillatory wall shear stress which, together with higher diastolic pressures predicted in the FL, may indicate risk of expansion. This study, at the interface of engineering and medicine, demonstrates a relatively simple and computationally efficient approach to account for arterial deformation and wave propagation phenomena in a three-dimensional model of AD, representing a step forward in the use of CFD as a potential tool for AD management and clinical support.</description><subject>Aged</subject><subject>Aneurysm, Dissecting - pathology</subject><subject>Aneurysm, Dissecting - physiopathology</subject><subject>Aorta</subject><subject>Aortic Dissection</subject><subject>Blood Pressure</subject><subject>Boundary conditions</subject><subject>Computational efficiency</subject><subject>Computational Fluid Dynamics</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Deformation</subject><subject>Dissection</subject><subject>Elastic waves</subject><subject>Fluid dynamics</subject><subject>Fluid–structure Interaction</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Life Sciences–Engineering interface</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Models, Cardiovascular</subject><subject>Morbidity</subject><subject>Moving Boundary</subject><subject>Patient-Specific Simulation</subject><subject>Precision Medicine</subject><subject>Pressure</subject><subject>Shear stress</subject><subject>Software</subject><subject>Three dimensional models</subject><subject>Wave propagation</subject><subject>Windkessel Model</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkcFu1DAQhiMEoqVw5YgsceGSxXbi2OGAhFYtIFXiAmdr7DhbV0682E6lfRmelUm3rApCsmR75pt_xv6r6jWjG0Z79T5lP244ZXJDu4Y_qc6ZbHktuo4_PZ1Vf1a9yPmW0kY2QjyvznjPmGJMnFe_tnHaLwWKjzMEUmIMmYwxERv87C2G8rLfx1Q-ECDTEoqvM0YdsVgXPMyFTHFw4b7mBhxeDjNM3pLsEb_XzcTPBHChDCYGn7Oza4IYyG4geDgqYzE29BPs_LwjAxR4WT0bIWT36mG_qH5cXX7ffqmvv33-uv10XVvBValF3wngcjSMcslGJ1sp6MikGYBzI8QgbS8GxRQ1YFpoWqMEGAais46bxjUX1cej7n4xkxusm0uCoPcJh0kHHcHrvzOzv9G7eKeF5Ix1EgXePQik-HNxuejJZ-tCgNnFJWvWd7zlirYU0bf_oLdxSfj7K6XaRtGG9khtjpRNMefkxtMwjOrVer1ar1fr9Wo9Frx5_IQT_sdrBJojkOIBm0XrXTk86v1_2d9rlsB6</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Bonfanti, Mirko</creator><creator>Balabani, Stavroula</creator><creator>Greenwood, John P.</creator><creator>Puppala, Sapna</creator><creator>Homer-Vanniasinkam, Shervanthi</creator><creator>Díaz-Zuccarini, Vanessa</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5548-3298</orcidid><orcidid>https://orcid.org/0000-0002-6287-1106</orcidid><orcidid>https://orcid.org/0000-0002-2861-0914</orcidid></search><sort><creationdate>20171101</creationdate><title>Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data</title><author>Bonfanti, Mirko ; Balabani, Stavroula ; Greenwood, John P. ; Puppala, Sapna ; Homer-Vanniasinkam, Shervanthi ; Díaz-Zuccarini, Vanessa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-5965a27fb10271fe74750f17bda22b55d7c95d8180bab4a34b85ab1a56ce2b3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Aneurysm, Dissecting - pathology</topic><topic>Aneurysm, Dissecting - physiopathology</topic><topic>Aorta</topic><topic>Aortic Dissection</topic><topic>Blood Pressure</topic><topic>Boundary conditions</topic><topic>Computational efficiency</topic><topic>Computational Fluid Dynamics</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Deformation</topic><topic>Dissection</topic><topic>Elastic waves</topic><topic>Fluid dynamics</topic><topic>Fluid–structure Interaction</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Life Sciences–Engineering interface</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Models, Cardiovascular</topic><topic>Morbidity</topic><topic>Moving Boundary</topic><topic>Patient-Specific Simulation</topic><topic>Precision Medicine</topic><topic>Pressure</topic><topic>Shear stress</topic><topic>Software</topic><topic>Three dimensional models</topic><topic>Wave propagation</topic><topic>Windkessel Model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonfanti, Mirko</creatorcontrib><creatorcontrib>Balabani, Stavroula</creatorcontrib><creatorcontrib>Greenwood, John P.</creatorcontrib><creatorcontrib>Puppala, Sapna</creatorcontrib><creatorcontrib>Homer-Vanniasinkam, Shervanthi</creatorcontrib><creatorcontrib>Díaz-Zuccarini, Vanessa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonfanti, Mirko</au><au>Balabani, Stavroula</au><au>Greenwood, John P.</au><au>Puppala, Sapna</au><au>Homer-Vanniasinkam, Shervanthi</au><au>Díaz-Zuccarini, Vanessa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J R Soc Interface</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>14</volume><issue>136</issue><spage>20170632</spage><epage>20170632</epage><pages>20170632-20170632</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Aortic dissection (AD) is a vascular condition with high morbidity and mortality rates. Computational fluid dynamics (CFD) can provide insight into the progression of AD and aid clinical decisions; however, oversimplified modelling assumptions and high computational cost compromise the accuracy of the information and impede clinical translation. To overcome these limitations, a patient-specific CFD multi-scale approach coupled to Windkessel boundary conditions and accounting for wall compliance was developed and used to study a patient with AD. A new moving boundary algorithm was implemented to capture wall displacement and a rich in vivo clinical dataset was used to tune model parameters and for validation. Comparisons between in silico and in vivo data showed that this approach successfully captures flow and pressure waves for the patient-specific AD and is able to predict the pressure in the false lumen (FL), a critical variable for the clinical management of the condition. Results showed regions of low and oscillatory wall shear stress which, together with higher diastolic pressures predicted in the FL, may indicate risk of expansion. This study, at the interface of engineering and medicine, demonstrates a relatively simple and computationally efficient approach to account for arterial deformation and wave propagation phenomena in a three-dimensional model of AD, representing a step forward in the use of CFD as a potential tool for AD management and clinical support.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>29118115</pmid><doi>10.1098/rsif.2017.0632</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5548-3298</orcidid><orcidid>https://orcid.org/0000-0002-6287-1106</orcidid><orcidid>https://orcid.org/0000-0002-2861-0914</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5689 |
ispartof | Journal of the Royal Society interface, 2017-11, Vol.14 (136), p.20170632-20170632 |
issn | 1742-5689 1742-5662 |
language | eng |
recordid | cdi_proquest_journals_1984380309 |
source | PubMed Central; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Aged Aneurysm, Dissecting - pathology Aneurysm, Dissecting - physiopathology Aorta Aortic Dissection Blood Pressure Boundary conditions Computational efficiency Computational Fluid Dynamics Computer applications Computer Simulation Deformation Dissection Elastic waves Fluid dynamics Fluid–structure Interaction Humans Hydrodynamics Life Sciences–Engineering interface Male Mathematical models Models, Cardiovascular Morbidity Moving Boundary Patient-Specific Simulation Precision Medicine Pressure Shear stress Software Three dimensional models Wave propagation Windkessel Model |
title | Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20tools%20for%20clinical%20support:%20a%20multi-scale%20compliant%20model%20for%20haemodynamic%20simulations%20in%20an%20aortic%20dissection%20based%20on%20multi-modal%20imaging%20data&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Bonfanti,%20Mirko&rft.date=2017-11-01&rft.volume=14&rft.issue=136&rft.spage=20170632&rft.epage=20170632&rft.pages=20170632-20170632&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2017.0632&rft_dat=%3Cproquest_royal%3E1962428040%3C/proquest_royal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-5965a27fb10271fe74750f17bda22b55d7c95d8180bab4a34b85ab1a56ce2b3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1984380309&rft_id=info:pmid/29118115&rfr_iscdi=true |