Loading…

Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data

Aortic dissection (AD) is a vascular condition with high morbidity and mortality rates. Computational fluid dynamics (CFD) can provide insight into the progression of AD and aid clinical decisions; however, oversimplified modelling assumptions and high computational cost compromise the accuracy of t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Society interface 2017-11, Vol.14 (136), p.20170632-20170632
Main Authors: Bonfanti, Mirko, Balabani, Stavroula, Greenwood, John P., Puppala, Sapna, Homer-Vanniasinkam, Shervanthi, Díaz-Zuccarini, Vanessa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c528t-5965a27fb10271fe74750f17bda22b55d7c95d8180bab4a34b85ab1a56ce2b3e3
cites cdi_FETCH-LOGICAL-c528t-5965a27fb10271fe74750f17bda22b55d7c95d8180bab4a34b85ab1a56ce2b3e3
container_end_page 20170632
container_issue 136
container_start_page 20170632
container_title Journal of the Royal Society interface
container_volume 14
creator Bonfanti, Mirko
Balabani, Stavroula
Greenwood, John P.
Puppala, Sapna
Homer-Vanniasinkam, Shervanthi
Díaz-Zuccarini, Vanessa
description Aortic dissection (AD) is a vascular condition with high morbidity and mortality rates. Computational fluid dynamics (CFD) can provide insight into the progression of AD and aid clinical decisions; however, oversimplified modelling assumptions and high computational cost compromise the accuracy of the information and impede clinical translation. To overcome these limitations, a patient-specific CFD multi-scale approach coupled to Windkessel boundary conditions and accounting for wall compliance was developed and used to study a patient with AD. A new moving boundary algorithm was implemented to capture wall displacement and a rich in vivo clinical dataset was used to tune model parameters and for validation. Comparisons between in silico and in vivo data showed that this approach successfully captures flow and pressure waves for the patient-specific AD and is able to predict the pressure in the false lumen (FL), a critical variable for the clinical management of the condition. Results showed regions of low and oscillatory wall shear stress which, together with higher diastolic pressures predicted in the FL, may indicate risk of expansion. This study, at the interface of engineering and medicine, demonstrates a relatively simple and computationally efficient approach to account for arterial deformation and wave propagation phenomena in a three-dimensional model of AD, representing a step forward in the use of CFD as a potential tool for AD management and clinical support.
doi_str_mv 10.1098/rsif.2017.0632
format article
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_proquest_journals_1984380309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962428040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-5965a27fb10271fe74750f17bda22b55d7c95d8180bab4a34b85ab1a56ce2b3e3</originalsourceid><addsrcrecordid>eNptkcFu1DAQhiMEoqVw5YgsceGSxXbi2OGAhFYtIFXiAmdr7DhbV0682E6lfRmelUm3rApCsmR75pt_xv6r6jWjG0Z79T5lP244ZXJDu4Y_qc6ZbHktuo4_PZ1Vf1a9yPmW0kY2QjyvznjPmGJMnFe_tnHaLwWKjzMEUmIMmYwxERv87C2G8rLfx1Q-ECDTEoqvM0YdsVgXPMyFTHFw4b7mBhxeDjNM3pLsEb_XzcTPBHChDCYGn7Oza4IYyG4geDgqYzE29BPs_LwjAxR4WT0bIWT36mG_qH5cXX7ffqmvv33-uv10XVvBValF3wngcjSMcslGJ1sp6MikGYBzI8QgbS8GxRQ1YFpoWqMEGAais46bxjUX1cej7n4xkxusm0uCoPcJh0kHHcHrvzOzv9G7eKeF5Ix1EgXePQik-HNxuejJZ-tCgNnFJWvWd7zlirYU0bf_oLdxSfj7K6XaRtGG9khtjpRNMefkxtMwjOrVer1ar1fr9Wo9Frx5_IQT_sdrBJojkOIBm0XrXTk86v1_2d9rlsB6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984380309</pqid></control><display><type>article</type><title>Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data</title><source>PubMed Central</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Bonfanti, Mirko ; Balabani, Stavroula ; Greenwood, John P. ; Puppala, Sapna ; Homer-Vanniasinkam, Shervanthi ; Díaz-Zuccarini, Vanessa</creator><creatorcontrib>Bonfanti, Mirko ; Balabani, Stavroula ; Greenwood, John P. ; Puppala, Sapna ; Homer-Vanniasinkam, Shervanthi ; Díaz-Zuccarini, Vanessa</creatorcontrib><description>Aortic dissection (AD) is a vascular condition with high morbidity and mortality rates. Computational fluid dynamics (CFD) can provide insight into the progression of AD and aid clinical decisions; however, oversimplified modelling assumptions and high computational cost compromise the accuracy of the information and impede clinical translation. To overcome these limitations, a patient-specific CFD multi-scale approach coupled to Windkessel boundary conditions and accounting for wall compliance was developed and used to study a patient with AD. A new moving boundary algorithm was implemented to capture wall displacement and a rich in vivo clinical dataset was used to tune model parameters and for validation. Comparisons between in silico and in vivo data showed that this approach successfully captures flow and pressure waves for the patient-specific AD and is able to predict the pressure in the false lumen (FL), a critical variable for the clinical management of the condition. Results showed regions of low and oscillatory wall shear stress which, together with higher diastolic pressures predicted in the FL, may indicate risk of expansion. This study, at the interface of engineering and medicine, demonstrates a relatively simple and computationally efficient approach to account for arterial deformation and wave propagation phenomena in a three-dimensional model of AD, representing a step forward in the use of CFD as a potential tool for AD management and clinical support.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2017.0632</identifier><identifier>PMID: 29118115</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Aged ; Aneurysm, Dissecting - pathology ; Aneurysm, Dissecting - physiopathology ; Aorta ; Aortic Dissection ; Blood Pressure ; Boundary conditions ; Computational efficiency ; Computational Fluid Dynamics ; Computer applications ; Computer Simulation ; Deformation ; Dissection ; Elastic waves ; Fluid dynamics ; Fluid–structure Interaction ; Humans ; Hydrodynamics ; Life Sciences–Engineering interface ; Male ; Mathematical models ; Models, Cardiovascular ; Morbidity ; Moving Boundary ; Patient-Specific Simulation ; Precision Medicine ; Pressure ; Shear stress ; Software ; Three dimensional models ; Wave propagation ; Windkessel Model</subject><ispartof>Journal of the Royal Society interface, 2017-11, Vol.14 (136), p.20170632-20170632</ispartof><rights>2017 The Authors.</rights><rights>2017 The Author(s).</rights><rights>Copyright The Royal Society Publishing Nov 2017</rights><rights>2017 The Authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-5965a27fb10271fe74750f17bda22b55d7c95d8180bab4a34b85ab1a56ce2b3e3</citedby><cites>FETCH-LOGICAL-c528t-5965a27fb10271fe74750f17bda22b55d7c95d8180bab4a34b85ab1a56ce2b3e3</cites><orcidid>0000-0001-5548-3298 ; 0000-0002-6287-1106 ; 0000-0002-2861-0914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721167/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721167/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29118115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonfanti, Mirko</creatorcontrib><creatorcontrib>Balabani, Stavroula</creatorcontrib><creatorcontrib>Greenwood, John P.</creatorcontrib><creatorcontrib>Puppala, Sapna</creatorcontrib><creatorcontrib>Homer-Vanniasinkam, Shervanthi</creatorcontrib><creatorcontrib>Díaz-Zuccarini, Vanessa</creatorcontrib><title>Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J R Soc Interface</addtitle><description>Aortic dissection (AD) is a vascular condition with high morbidity and mortality rates. Computational fluid dynamics (CFD) can provide insight into the progression of AD and aid clinical decisions; however, oversimplified modelling assumptions and high computational cost compromise the accuracy of the information and impede clinical translation. To overcome these limitations, a patient-specific CFD multi-scale approach coupled to Windkessel boundary conditions and accounting for wall compliance was developed and used to study a patient with AD. A new moving boundary algorithm was implemented to capture wall displacement and a rich in vivo clinical dataset was used to tune model parameters and for validation. Comparisons between in silico and in vivo data showed that this approach successfully captures flow and pressure waves for the patient-specific AD and is able to predict the pressure in the false lumen (FL), a critical variable for the clinical management of the condition. Results showed regions of low and oscillatory wall shear stress which, together with higher diastolic pressures predicted in the FL, may indicate risk of expansion. This study, at the interface of engineering and medicine, demonstrates a relatively simple and computationally efficient approach to account for arterial deformation and wave propagation phenomena in a three-dimensional model of AD, representing a step forward in the use of CFD as a potential tool for AD management and clinical support.</description><subject>Aged</subject><subject>Aneurysm, Dissecting - pathology</subject><subject>Aneurysm, Dissecting - physiopathology</subject><subject>Aorta</subject><subject>Aortic Dissection</subject><subject>Blood Pressure</subject><subject>Boundary conditions</subject><subject>Computational efficiency</subject><subject>Computational Fluid Dynamics</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Deformation</subject><subject>Dissection</subject><subject>Elastic waves</subject><subject>Fluid dynamics</subject><subject>Fluid–structure Interaction</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Life Sciences–Engineering interface</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Models, Cardiovascular</subject><subject>Morbidity</subject><subject>Moving Boundary</subject><subject>Patient-Specific Simulation</subject><subject>Precision Medicine</subject><subject>Pressure</subject><subject>Shear stress</subject><subject>Software</subject><subject>Three dimensional models</subject><subject>Wave propagation</subject><subject>Windkessel Model</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkcFu1DAQhiMEoqVw5YgsceGSxXbi2OGAhFYtIFXiAmdr7DhbV0682E6lfRmelUm3rApCsmR75pt_xv6r6jWjG0Z79T5lP244ZXJDu4Y_qc6ZbHktuo4_PZ1Vf1a9yPmW0kY2QjyvznjPmGJMnFe_tnHaLwWKjzMEUmIMmYwxERv87C2G8rLfx1Q-ECDTEoqvM0YdsVgXPMyFTHFw4b7mBhxeDjNM3pLsEb_XzcTPBHChDCYGn7Oza4IYyG4geDgqYzE29BPs_LwjAxR4WT0bIWT36mG_qH5cXX7ffqmvv33-uv10XVvBValF3wngcjSMcslGJ1sp6MikGYBzI8QgbS8GxRQ1YFpoWqMEGAais46bxjUX1cej7n4xkxusm0uCoPcJh0kHHcHrvzOzv9G7eKeF5Ix1EgXePQik-HNxuejJZ-tCgNnFJWvWd7zlirYU0bf_oLdxSfj7K6XaRtGG9khtjpRNMefkxtMwjOrVer1ar1fr9Wo9Frx5_IQT_sdrBJojkOIBm0XrXTk86v1_2d9rlsB6</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Bonfanti, Mirko</creator><creator>Balabani, Stavroula</creator><creator>Greenwood, John P.</creator><creator>Puppala, Sapna</creator><creator>Homer-Vanniasinkam, Shervanthi</creator><creator>Díaz-Zuccarini, Vanessa</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5548-3298</orcidid><orcidid>https://orcid.org/0000-0002-6287-1106</orcidid><orcidid>https://orcid.org/0000-0002-2861-0914</orcidid></search><sort><creationdate>20171101</creationdate><title>Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data</title><author>Bonfanti, Mirko ; Balabani, Stavroula ; Greenwood, John P. ; Puppala, Sapna ; Homer-Vanniasinkam, Shervanthi ; Díaz-Zuccarini, Vanessa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-5965a27fb10271fe74750f17bda22b55d7c95d8180bab4a34b85ab1a56ce2b3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Aneurysm, Dissecting - pathology</topic><topic>Aneurysm, Dissecting - physiopathology</topic><topic>Aorta</topic><topic>Aortic Dissection</topic><topic>Blood Pressure</topic><topic>Boundary conditions</topic><topic>Computational efficiency</topic><topic>Computational Fluid Dynamics</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Deformation</topic><topic>Dissection</topic><topic>Elastic waves</topic><topic>Fluid dynamics</topic><topic>Fluid–structure Interaction</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Life Sciences–Engineering interface</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Models, Cardiovascular</topic><topic>Morbidity</topic><topic>Moving Boundary</topic><topic>Patient-Specific Simulation</topic><topic>Precision Medicine</topic><topic>Pressure</topic><topic>Shear stress</topic><topic>Software</topic><topic>Three dimensional models</topic><topic>Wave propagation</topic><topic>Windkessel Model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonfanti, Mirko</creatorcontrib><creatorcontrib>Balabani, Stavroula</creatorcontrib><creatorcontrib>Greenwood, John P.</creatorcontrib><creatorcontrib>Puppala, Sapna</creatorcontrib><creatorcontrib>Homer-Vanniasinkam, Shervanthi</creatorcontrib><creatorcontrib>Díaz-Zuccarini, Vanessa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonfanti, Mirko</au><au>Balabani, Stavroula</au><au>Greenwood, John P.</au><au>Puppala, Sapna</au><au>Homer-Vanniasinkam, Shervanthi</au><au>Díaz-Zuccarini, Vanessa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J R Soc Interface</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>14</volume><issue>136</issue><spage>20170632</spage><epage>20170632</epage><pages>20170632-20170632</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Aortic dissection (AD) is a vascular condition with high morbidity and mortality rates. Computational fluid dynamics (CFD) can provide insight into the progression of AD and aid clinical decisions; however, oversimplified modelling assumptions and high computational cost compromise the accuracy of the information and impede clinical translation. To overcome these limitations, a patient-specific CFD multi-scale approach coupled to Windkessel boundary conditions and accounting for wall compliance was developed and used to study a patient with AD. A new moving boundary algorithm was implemented to capture wall displacement and a rich in vivo clinical dataset was used to tune model parameters and for validation. Comparisons between in silico and in vivo data showed that this approach successfully captures flow and pressure waves for the patient-specific AD and is able to predict the pressure in the false lumen (FL), a critical variable for the clinical management of the condition. Results showed regions of low and oscillatory wall shear stress which, together with higher diastolic pressures predicted in the FL, may indicate risk of expansion. This study, at the interface of engineering and medicine, demonstrates a relatively simple and computationally efficient approach to account for arterial deformation and wave propagation phenomena in a three-dimensional model of AD, representing a step forward in the use of CFD as a potential tool for AD management and clinical support.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>29118115</pmid><doi>10.1098/rsif.2017.0632</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5548-3298</orcidid><orcidid>https://orcid.org/0000-0002-6287-1106</orcidid><orcidid>https://orcid.org/0000-0002-2861-0914</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2017-11, Vol.14 (136), p.20170632-20170632
issn 1742-5689
1742-5662
language eng
recordid cdi_proquest_journals_1984380309
source PubMed Central; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Aged
Aneurysm, Dissecting - pathology
Aneurysm, Dissecting - physiopathology
Aorta
Aortic Dissection
Blood Pressure
Boundary conditions
Computational efficiency
Computational Fluid Dynamics
Computer applications
Computer Simulation
Deformation
Dissection
Elastic waves
Fluid dynamics
Fluid–structure Interaction
Humans
Hydrodynamics
Life Sciences–Engineering interface
Male
Mathematical models
Models, Cardiovascular
Morbidity
Moving Boundary
Patient-Specific Simulation
Precision Medicine
Pressure
Shear stress
Software
Three dimensional models
Wave propagation
Windkessel Model
title Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20tools%20for%20clinical%20support:%20a%20multi-scale%20compliant%20model%20for%20haemodynamic%20simulations%20in%20an%20aortic%20dissection%20based%20on%20multi-modal%20imaging%20data&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Bonfanti,%20Mirko&rft.date=2017-11-01&rft.volume=14&rft.issue=136&rft.spage=20170632&rft.epage=20170632&rft.pages=20170632-20170632&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2017.0632&rft_dat=%3Cproquest_royal%3E1962428040%3C/proquest_royal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-5965a27fb10271fe74750f17bda22b55d7c95d8180bab4a34b85ab1a56ce2b3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1984380309&rft_id=info:pmid/29118115&rfr_iscdi=true