Loading…
A Siamese Deep Forest
A Siamese Deep Forest (SDF) is proposed in the paper. It is based on the Deep Forest or gcForest proposed by Zhou and Feng and can be viewed as a gcForest modification. It can be also regarded as an alternative to the well-known Siamese neural networks. The SDF uses a modified training set consistin...
Saved in:
Published in: | Knowledge-based systems 2018-01, Vol.139, p.13-22 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A Siamese Deep Forest (SDF) is proposed in the paper. It is based on the Deep Forest or gcForest proposed by Zhou and Feng and can be viewed as a gcForest modification. It can be also regarded as an alternative to the well-known Siamese neural networks. The SDF uses a modified training set consisting of concatenated pairs of vectors. Moreover, it defines the class distributions in the deep forest as the weighted sum of the tree class probabilities such that the weights are determined in order to reduce distances between similar pairs and to increase them between dissimilar points. We show that the weights can be obtained by solving a quadratic optimization problem. The SDF aims to prevent overfitting which takes place in neural networks when only limited training data are available. The numerical experiments illustrate the proposed distance metric method. |
---|---|
ISSN: | 0950-7051 1872-7409 |
DOI: | 10.1016/j.knosys.2017.10.006 |