Loading…

Fault gouge graphitization as evidence of past seismic slip

One moderate- to large-magnitude earthquake (M > 6) nucleates in Earth's crust every three days on average, but the geological record of ancient fault slip at meters-per-second seismic velocities (as opposed to subseismic slow-slip creep) remains debated because of the lack of established fa...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2017-11, Vol.45 (11), p.979-982
Main Authors: Kuo, Li-Wei, Di Felice, Fabio, Spagnuolo, Elena, Di Toro, Giulio, Song, Sheng-Rong, Aretusini, Stefano, Li Haibing, Li Haibing, Suppe, John, Si Jialiang, Si Jialiang, Wen, Cheng-Yen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a414t-490320961739ebe5b4803ef83a7d2ae04a985d833e0d0e8161c057a414ef67203
cites cdi_FETCH-LOGICAL-a414t-490320961739ebe5b4803ef83a7d2ae04a985d833e0d0e8161c057a414ef67203
container_end_page 982
container_issue 11
container_start_page 979
container_title Geology (Boulder)
container_volume 45
creator Kuo, Li-Wei
Di Felice, Fabio
Spagnuolo, Elena
Di Toro, Giulio
Song, Sheng-Rong
Aretusini, Stefano
Li Haibing, Li Haibing
Suppe, John
Si Jialiang, Si Jialiang
Wen, Cheng-Yen
description One moderate- to large-magnitude earthquake (M > 6) nucleates in Earth's crust every three days on average, but the geological record of ancient fault slip at meters-per-second seismic velocities (as opposed to subseismic slow-slip creep) remains debated because of the lack of established fault-zone evidence of seismic slip. Here we show that the irreversible temperature-dependent transformation of carbonaceous material (CM, a constituent of many fault gouges) into graphite is a reliable tracer of seismic fault slip. We sheared CM-bearing fault rocks in the laboratory at just above subseismic and at seismic velocities under both water-rich and water-deficient conditions and modeled the temperature evolution with slip. By means of micro-Raman spectroscopy and focused-ion beam transmission electron microscopy, we detected graphite grains similar to those found in the principal slip zone of the A.D. 2008 Wenchuan (Mw 7.9) earthquake (southeast Tibet) only in experiments conducted at seismic velocities. The experimental evidence presented here suggests that high-temperature pulses associated with seismic slip induce graphitization of CM. Importantly, the occurrence of graphitized fault-zone CM may allow us to ascertain the seismogenic potential of faults in areas worldwide with incomplete historical earthquake catalogues.
doi_str_mv 10.1130/G39295.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1986189090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986189090</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-490320961739ebe5b4803ef83a7d2ae04a985d833e0d0e8161c057a414ef67203</originalsourceid><addsrcrecordid>eNpFkE9LxDAUxIMouP4BP0LAiyBd30vSNsGTLO4qLHjRc8i2rzVLd1uTVtFP75YKnubymxlmGLtCmCNKuFtJI0w6xyM2Q6NkIjItjtkMwGCSZyhP2VmMWwBUaa5n7H7phqbndTvUxOvgunff-x_X-3bPXeT06UvaF8Tbincu9jySjztf8Nj47oKdVK6JdPmn5-xt-fi6eErWL6vnxcM6cQpVnygDUoDJMJeGNpRulAZJlZYuL4UjUM7otNRSEpRAGjMsIM1HL1VZLkCes-sptwvtx0Cxt9t2CPtDpUWjM9QGzEjdTFQR2hgDVbYLfufCt0Ww4zV2usbiAb2d0JraWPhx4FcbmvI_VwBqC0IpTOUvr4VibQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986189090</pqid></control><display><type>article</type><title>Fault gouge graphitization as evidence of past seismic slip</title><source>GeoScienceWorld</source><creator>Kuo, Li-Wei ; Di Felice, Fabio ; Spagnuolo, Elena ; Di Toro, Giulio ; Song, Sheng-Rong ; Aretusini, Stefano ; Li Haibing, Li Haibing ; Suppe, John ; Si Jialiang, Si Jialiang ; Wen, Cheng-Yen</creator><creatorcontrib>Kuo, Li-Wei ; Di Felice, Fabio ; Spagnuolo, Elena ; Di Toro, Giulio ; Song, Sheng-Rong ; Aretusini, Stefano ; Li Haibing, Li Haibing ; Suppe, John ; Si Jialiang, Si Jialiang ; Wen, Cheng-Yen</creatorcontrib><description>One moderate- to large-magnitude earthquake (M &gt; 6) nucleates in Earth's crust every three days on average, but the geological record of ancient fault slip at meters-per-second seismic velocities (as opposed to subseismic slow-slip creep) remains debated because of the lack of established fault-zone evidence of seismic slip. Here we show that the irreversible temperature-dependent transformation of carbonaceous material (CM, a constituent of many fault gouges) into graphite is a reliable tracer of seismic fault slip. We sheared CM-bearing fault rocks in the laboratory at just above subseismic and at seismic velocities under both water-rich and water-deficient conditions and modeled the temperature evolution with slip. By means of micro-Raman spectroscopy and focused-ion beam transmission electron microscopy, we detected graphite grains similar to those found in the principal slip zone of the A.D. 2008 Wenchuan (Mw 7.9) earthquake (southeast Tibet) only in experiments conducted at seismic velocities. The experimental evidence presented here suggests that high-temperature pulses associated with seismic slip induce graphitization of CM. Importantly, the occurrence of graphitized fault-zone CM may allow us to ascertain the seismogenic potential of faults in areas worldwide with incomplete historical earthquake catalogues.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G39295.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>Analytical methods ; breccia ; carbonaceous composition ; Creep (materials) ; Earth ; Earth crust ; Earthquakes ; Electron microscopy ; Evolution ; experimental studies ; Faults ; friction ; gouge ; Graphite ; Graphitization ; heating ; High temperature ; laboratory studies ; Measuring instruments ; native elements ; Raman spectra ; Raman spectroscopy ; Rocks ; Seismic activity ; Seismic engineering ; Seismic velocities ; Slip ; slip rates ; Solifluction ; spectra ; Spectroscopy ; Structural geology ; Temperature ; Temperature dependence ; Temperature effects ; Tracers ; Transmission electron microscopy</subject><ispartof>Geology (Boulder), 2017-11, Vol.45 (11), p.979-982</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute.</rights><rights>Copyright Geological Society of America Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-490320961739ebe5b4803ef83a7d2ae04a985d833e0d0e8161c057a414ef67203</citedby><cites>FETCH-LOGICAL-a414t-490320961739ebe5b4803ef83a7d2ae04a985d833e0d0e8161c057a414ef67203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G39295.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,38881,77824</link.rule.ids></links><search><creatorcontrib>Kuo, Li-Wei</creatorcontrib><creatorcontrib>Di Felice, Fabio</creatorcontrib><creatorcontrib>Spagnuolo, Elena</creatorcontrib><creatorcontrib>Di Toro, Giulio</creatorcontrib><creatorcontrib>Song, Sheng-Rong</creatorcontrib><creatorcontrib>Aretusini, Stefano</creatorcontrib><creatorcontrib>Li Haibing, Li Haibing</creatorcontrib><creatorcontrib>Suppe, John</creatorcontrib><creatorcontrib>Si Jialiang, Si Jialiang</creatorcontrib><creatorcontrib>Wen, Cheng-Yen</creatorcontrib><title>Fault gouge graphitization as evidence of past seismic slip</title><title>Geology (Boulder)</title><description>One moderate- to large-magnitude earthquake (M &gt; 6) nucleates in Earth's crust every three days on average, but the geological record of ancient fault slip at meters-per-second seismic velocities (as opposed to subseismic slow-slip creep) remains debated because of the lack of established fault-zone evidence of seismic slip. Here we show that the irreversible temperature-dependent transformation of carbonaceous material (CM, a constituent of many fault gouges) into graphite is a reliable tracer of seismic fault slip. We sheared CM-bearing fault rocks in the laboratory at just above subseismic and at seismic velocities under both water-rich and water-deficient conditions and modeled the temperature evolution with slip. By means of micro-Raman spectroscopy and focused-ion beam transmission electron microscopy, we detected graphite grains similar to those found in the principal slip zone of the A.D. 2008 Wenchuan (Mw 7.9) earthquake (southeast Tibet) only in experiments conducted at seismic velocities. The experimental evidence presented here suggests that high-temperature pulses associated with seismic slip induce graphitization of CM. Importantly, the occurrence of graphitized fault-zone CM may allow us to ascertain the seismogenic potential of faults in areas worldwide with incomplete historical earthquake catalogues.</description><subject>Analytical methods</subject><subject>breccia</subject><subject>carbonaceous composition</subject><subject>Creep (materials)</subject><subject>Earth</subject><subject>Earth crust</subject><subject>Earthquakes</subject><subject>Electron microscopy</subject><subject>Evolution</subject><subject>experimental studies</subject><subject>Faults</subject><subject>friction</subject><subject>gouge</subject><subject>Graphite</subject><subject>Graphitization</subject><subject>heating</subject><subject>High temperature</subject><subject>laboratory studies</subject><subject>Measuring instruments</subject><subject>native elements</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Rocks</subject><subject>Seismic activity</subject><subject>Seismic engineering</subject><subject>Seismic velocities</subject><subject>Slip</subject><subject>slip rates</subject><subject>Solifluction</subject><subject>spectra</subject><subject>Spectroscopy</subject><subject>Structural geology</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Tracers</subject><subject>Transmission electron microscopy</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LxDAUxIMouP4BP0LAiyBd30vSNsGTLO4qLHjRc8i2rzVLd1uTVtFP75YKnubymxlmGLtCmCNKuFtJI0w6xyM2Q6NkIjItjtkMwGCSZyhP2VmMWwBUaa5n7H7phqbndTvUxOvgunff-x_X-3bPXeT06UvaF8Tbincu9jySjztf8Nj47oKdVK6JdPmn5-xt-fi6eErWL6vnxcM6cQpVnygDUoDJMJeGNpRulAZJlZYuL4UjUM7otNRSEpRAGjMsIM1HL1VZLkCes-sptwvtx0Cxt9t2CPtDpUWjM9QGzEjdTFQR2hgDVbYLfufCt0Ww4zV2usbiAb2d0JraWPhx4FcbmvI_VwBqC0IpTOUvr4VibQ</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Kuo, Li-Wei</creator><creator>Di Felice, Fabio</creator><creator>Spagnuolo, Elena</creator><creator>Di Toro, Giulio</creator><creator>Song, Sheng-Rong</creator><creator>Aretusini, Stefano</creator><creator>Li Haibing, Li Haibing</creator><creator>Suppe, John</creator><creator>Si Jialiang, Si Jialiang</creator><creator>Wen, Cheng-Yen</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20171101</creationdate><title>Fault gouge graphitization as evidence of past seismic slip</title><author>Kuo, Li-Wei ; Di Felice, Fabio ; Spagnuolo, Elena ; Di Toro, Giulio ; Song, Sheng-Rong ; Aretusini, Stefano ; Li Haibing, Li Haibing ; Suppe, John ; Si Jialiang, Si Jialiang ; Wen, Cheng-Yen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-490320961739ebe5b4803ef83a7d2ae04a985d833e0d0e8161c057a414ef67203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical methods</topic><topic>breccia</topic><topic>carbonaceous composition</topic><topic>Creep (materials)</topic><topic>Earth</topic><topic>Earth crust</topic><topic>Earthquakes</topic><topic>Electron microscopy</topic><topic>Evolution</topic><topic>experimental studies</topic><topic>Faults</topic><topic>friction</topic><topic>gouge</topic><topic>Graphite</topic><topic>Graphitization</topic><topic>heating</topic><topic>High temperature</topic><topic>laboratory studies</topic><topic>Measuring instruments</topic><topic>native elements</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Rocks</topic><topic>Seismic activity</topic><topic>Seismic engineering</topic><topic>Seismic velocities</topic><topic>Slip</topic><topic>slip rates</topic><topic>Solifluction</topic><topic>spectra</topic><topic>Spectroscopy</topic><topic>Structural geology</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Tracers</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuo, Li-Wei</creatorcontrib><creatorcontrib>Di Felice, Fabio</creatorcontrib><creatorcontrib>Spagnuolo, Elena</creatorcontrib><creatorcontrib>Di Toro, Giulio</creatorcontrib><creatorcontrib>Song, Sheng-Rong</creatorcontrib><creatorcontrib>Aretusini, Stefano</creatorcontrib><creatorcontrib>Li Haibing, Li Haibing</creatorcontrib><creatorcontrib>Suppe, John</creatorcontrib><creatorcontrib>Si Jialiang, Si Jialiang</creatorcontrib><creatorcontrib>Wen, Cheng-Yen</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuo, Li-Wei</au><au>Di Felice, Fabio</au><au>Spagnuolo, Elena</au><au>Di Toro, Giulio</au><au>Song, Sheng-Rong</au><au>Aretusini, Stefano</au><au>Li Haibing, Li Haibing</au><au>Suppe, John</au><au>Si Jialiang, Si Jialiang</au><au>Wen, Cheng-Yen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault gouge graphitization as evidence of past seismic slip</atitle><jtitle>Geology (Boulder)</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>45</volume><issue>11</issue><spage>979</spage><epage>982</epage><pages>979-982</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>One moderate- to large-magnitude earthquake (M &gt; 6) nucleates in Earth's crust every three days on average, but the geological record of ancient fault slip at meters-per-second seismic velocities (as opposed to subseismic slow-slip creep) remains debated because of the lack of established fault-zone evidence of seismic slip. Here we show that the irreversible temperature-dependent transformation of carbonaceous material (CM, a constituent of many fault gouges) into graphite is a reliable tracer of seismic fault slip. We sheared CM-bearing fault rocks in the laboratory at just above subseismic and at seismic velocities under both water-rich and water-deficient conditions and modeled the temperature evolution with slip. By means of micro-Raman spectroscopy and focused-ion beam transmission electron microscopy, we detected graphite grains similar to those found in the principal slip zone of the A.D. 2008 Wenchuan (Mw 7.9) earthquake (southeast Tibet) only in experiments conducted at seismic velocities. The experimental evidence presented here suggests that high-temperature pulses associated with seismic slip induce graphitization of CM. Importantly, the occurrence of graphitized fault-zone CM may allow us to ascertain the seismogenic potential of faults in areas worldwide with incomplete historical earthquake catalogues.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G39295.1</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-7613
ispartof Geology (Boulder), 2017-11, Vol.45 (11), p.979-982
issn 0091-7613
1943-2682
language eng
recordid cdi_proquest_journals_1986189090
source GeoScienceWorld
subjects Analytical methods
breccia
carbonaceous composition
Creep (materials)
Earth
Earth crust
Earthquakes
Electron microscopy
Evolution
experimental studies
Faults
friction
gouge
Graphite
Graphitization
heating
High temperature
laboratory studies
Measuring instruments
native elements
Raman spectra
Raman spectroscopy
Rocks
Seismic activity
Seismic engineering
Seismic velocities
Slip
slip rates
Solifluction
spectra
Spectroscopy
Structural geology
Temperature
Temperature dependence
Temperature effects
Tracers
Transmission electron microscopy
title Fault gouge graphitization as evidence of past seismic slip
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20gouge%20graphitization%20as%20evidence%20of%20past%20seismic%20slip&rft.jtitle=Geology%20(Boulder)&rft.au=Kuo,%20Li-Wei&rft.date=2017-11-01&rft.volume=45&rft.issue=11&rft.spage=979&rft.epage=982&rft.pages=979-982&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G39295.1&rft_dat=%3Cproquest_cross%3E1986189090%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-490320961739ebe5b4803ef83a7d2ae04a985d833e0d0e8161c057a414ef67203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1986189090&rft_id=info:pmid/&rfr_iscdi=true