Loading…

NOTE ON FINITE APPROXIMATIONS OF THE ASYMPTOTICALLY IDEAL MODEL

This note builds on recent work by Serletis and Shahmoradi [Macroeconomic Dynamics 9 (2005), 542–559] and estimates the AIM model at different degrees of approximation, using the same optimization procedures as in Gallant and Golub [Journal of Econometrics. 26 (1984), 295–321]. We estimate the model...

Full description

Saved in:
Bibliographic Details
Published in:Macroeconomic dynamics 2008-09, Vol.12 (4), p.579-590
Main Authors: Serletis, Apostolos, Shahmoradi, Asghar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-758e318885e460afabf5a2010b11a1183b14f76611e066f9e97db6752bdc978b3
cites cdi_FETCH-LOGICAL-c378t-758e318885e460afabf5a2010b11a1183b14f76611e066f9e97db6752bdc978b3
container_end_page 590
container_issue 4
container_start_page 579
container_title Macroeconomic dynamics
container_volume 12
creator Serletis, Apostolos
Shahmoradi, Asghar
description This note builds on recent work by Serletis and Shahmoradi [Macroeconomic Dynamics 9 (2005), 542–559] and estimates the AIM model at different degrees of approximation, using the same optimization procedures as in Gallant and Golub [Journal of Econometrics. 26 (1984), 295–321]. We estimate the models subject to regularity and provide a comparison between the different versions. We argue that the AIM(3) model estimated subject to global curvature currently provides the best specification for research in semiparametric modeling of consumer demand systems.
doi_str_mv 10.1017/S1365100508070260
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_198672596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1365100508070260</cupid><sourcerecordid>1787002551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-758e318885e460afabf5a2010b11a1183b14f76611e066f9e97db6752bdc978b3</originalsourceid><addsrcrecordid>eNp1UMtOwkAUnRhNRPQD3DXuq_d2mNfKNFCgSekQqYmsmhmYGogITmHh3zsEFibG1T2555UcQu4RHhFQPM2QcoYADCQISDhckA72uIolMH4ZcKDjI39Nbtp2DYCcJqpDnktdZZEuo2Fe5gGl0-mLfssnaZXrchbpYVSNw3c2n0wrXeX9tCjmUT7I0iKa6EFW3JKrxny07u58u-R1mFX9cVzo0VEdL6iQ-1gw6ShKKZnrcTCNsQ0zCSBYRIMoqcVeIzhHdMB5o5wSS8sFS-xyoYS0tEseTrk7v_06uHZfr7cH_xkqa1SSi4QpHkR4Ei38tm29a-qdX22M_64R6uNM9Z-ZgoeePWZj_Wr57n4l_-v6AY_EYbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198672596</pqid></control><display><type>article</type><title>NOTE ON FINITE APPROXIMATIONS OF THE ASYMPTOTICALLY IDEAL MODEL</title><source>Cambridge Journals Online</source><source>EBSCOhost Econlit with Full Text</source><source>ABI/INFORM Global</source><creator>Serletis, Apostolos ; Shahmoradi, Asghar</creator><creatorcontrib>Serletis, Apostolos ; Shahmoradi, Asghar</creatorcontrib><description>This note builds on recent work by Serletis and Shahmoradi [Macroeconomic Dynamics 9 (2005), 542–559] and estimates the AIM model at different degrees of approximation, using the same optimization procedures as in Gallant and Golub [Journal of Econometrics. 26 (1984), 295–321]. We estimate the models subject to regularity and provide a comparison between the different versions. We argue that the AIM(3) model estimated subject to global curvature currently provides the best specification for research in semiparametric modeling of consumer demand systems.</description><identifier>ISSN: 1365-1005</identifier><identifier>EISSN: 1469-8056</identifier><identifier>DOI: 10.1017/S1365100508070260</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Approximation ; Commercial banks ; Demand analysis ; Econometrics ; Economic theory ; Expenditures ; Macroeconomics ; Studies ; Travelers checks ; Utility functions</subject><ispartof>Macroeconomic dynamics, 2008-09, Vol.12 (4), p.579-590</ispartof><rights>Copyright © Cambridge University Press 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-758e318885e460afabf5a2010b11a1183b14f76611e066f9e97db6752bdc978b3</citedby><cites>FETCH-LOGICAL-c378t-758e318885e460afabf5a2010b11a1183b14f76611e066f9e97db6752bdc978b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/198672596/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/198672596?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,72960,74895</link.rule.ids></links><search><creatorcontrib>Serletis, Apostolos</creatorcontrib><creatorcontrib>Shahmoradi, Asghar</creatorcontrib><title>NOTE ON FINITE APPROXIMATIONS OF THE ASYMPTOTICALLY IDEAL MODEL</title><title>Macroeconomic dynamics</title><addtitle>Macroecon. Dynam</addtitle><description>This note builds on recent work by Serletis and Shahmoradi [Macroeconomic Dynamics 9 (2005), 542–559] and estimates the AIM model at different degrees of approximation, using the same optimization procedures as in Gallant and Golub [Journal of Econometrics. 26 (1984), 295–321]. We estimate the models subject to regularity and provide a comparison between the different versions. We argue that the AIM(3) model estimated subject to global curvature currently provides the best specification for research in semiparametric modeling of consumer demand systems.</description><subject>Approximation</subject><subject>Commercial banks</subject><subject>Demand analysis</subject><subject>Econometrics</subject><subject>Economic theory</subject><subject>Expenditures</subject><subject>Macroeconomics</subject><subject>Studies</subject><subject>Travelers checks</subject><subject>Utility functions</subject><issn>1365-1005</issn><issn>1469-8056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1UMtOwkAUnRhNRPQD3DXuq_d2mNfKNFCgSekQqYmsmhmYGogITmHh3zsEFibG1T2555UcQu4RHhFQPM2QcoYADCQISDhckA72uIolMH4ZcKDjI39Nbtp2DYCcJqpDnktdZZEuo2Fe5gGl0-mLfssnaZXrchbpYVSNw3c2n0wrXeX9tCjmUT7I0iKa6EFW3JKrxny07u58u-R1mFX9cVzo0VEdL6iQ-1gw6ShKKZnrcTCNsQ0zCSBYRIMoqcVeIzhHdMB5o5wSS8sFS-xyoYS0tEseTrk7v_06uHZfr7cH_xkqa1SSi4QpHkR4Ei38tm29a-qdX22M_64R6uNM9Z-ZgoeePWZj_Wr57n4l_-v6AY_EYbU</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Serletis, Apostolos</creator><creator>Shahmoradi, Asghar</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20080901</creationdate><title>NOTE ON FINITE APPROXIMATIONS OF THE ASYMPTOTICALLY IDEAL MODEL</title><author>Serletis, Apostolos ; Shahmoradi, Asghar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-758e318885e460afabf5a2010b11a1183b14f76611e066f9e97db6752bdc978b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation</topic><topic>Commercial banks</topic><topic>Demand analysis</topic><topic>Econometrics</topic><topic>Economic theory</topic><topic>Expenditures</topic><topic>Macroeconomics</topic><topic>Studies</topic><topic>Travelers checks</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serletis, Apostolos</creatorcontrib><creatorcontrib>Shahmoradi, Asghar</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Macroeconomic dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serletis, Apostolos</au><au>Shahmoradi, Asghar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NOTE ON FINITE APPROXIMATIONS OF THE ASYMPTOTICALLY IDEAL MODEL</atitle><jtitle>Macroeconomic dynamics</jtitle><addtitle>Macroecon. Dynam</addtitle><date>2008-09-01</date><risdate>2008</risdate><volume>12</volume><issue>4</issue><spage>579</spage><epage>590</epage><pages>579-590</pages><issn>1365-1005</issn><eissn>1469-8056</eissn><abstract>This note builds on recent work by Serletis and Shahmoradi [Macroeconomic Dynamics 9 (2005), 542–559] and estimates the AIM model at different degrees of approximation, using the same optimization procedures as in Gallant and Golub [Journal of Econometrics. 26 (1984), 295–321]. We estimate the models subject to regularity and provide a comparison between the different versions. We argue that the AIM(3) model estimated subject to global curvature currently provides the best specification for research in semiparametric modeling of consumer demand systems.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S1365100508070260</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1365-1005
ispartof Macroeconomic dynamics, 2008-09, Vol.12 (4), p.579-590
issn 1365-1005
1469-8056
language eng
recordid cdi_proquest_journals_198672596
source Cambridge Journals Online; EBSCOhost Econlit with Full Text; ABI/INFORM Global
subjects Approximation
Commercial banks
Demand analysis
Econometrics
Economic theory
Expenditures
Macroeconomics
Studies
Travelers checks
Utility functions
title NOTE ON FINITE APPROXIMATIONS OF THE ASYMPTOTICALLY IDEAL MODEL
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NOTE%20ON%20FINITE%20APPROXIMATIONS%20OF%20THE%20ASYMPTOTICALLY%20IDEAL%20MODEL&rft.jtitle=Macroeconomic%20dynamics&rft.au=Serletis,%20Apostolos&rft.date=2008-09-01&rft.volume=12&rft.issue=4&rft.spage=579&rft.epage=590&rft.pages=579-590&rft.issn=1365-1005&rft.eissn=1469-8056&rft_id=info:doi/10.1017/S1365100508070260&rft_dat=%3Cproquest_cross%3E1787002551%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-758e318885e460afabf5a2010b11a1183b14f76611e066f9e97db6752bdc978b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=198672596&rft_id=info:pmid/&rft_cupid=10_1017_S1365100508070260&rfr_iscdi=true