Loading…
Interaction of photosynthetic pigments with single-walled carbon nanotube (15, 15): a molecular dynamics study
In this study, adsorption of photosynthetic pigments on the inner and outer surfaces of single-walled carbon nanotube (15, 15) has been investigated using molecular dynamics simulation. The binding free energy is calculated by using the linear interaction energy algorithm, that its value indicates t...
Saved in:
Published in: | Adsorption : journal of the International Adsorption Society 2018, Vol.24 (1), p.43-51 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, adsorption of photosynthetic pigments on the inner and outer surfaces of single-walled carbon nanotube (15, 15) has been investigated using molecular dynamics simulation. The binding free energy is calculated by using the linear interaction energy algorithm, that its value indicates the adsorption of all pigments is desirable in both positions. Also, despite the high similarity between each category of these pigments, their interaction with the nanotube is different, that this result can be useful to separate these pigments from one another. According to Lennard–Jones potential energy between the pigments and carbon nanotube, the interaction on the inner surface is stronger than that on the outer surface for all pigments. The chlorophylls phytol tail interacts more strongly with the nanotube compared with the porphyrin ring of chlorophylls. The ability of carotenoids to institute π–π stacking is attributed to conjugated system. Furthermore, xanthophylls due to hydrogen bonded to oxygen atom form semi-hydrogen bonds with carbon nanotube. |
---|---|
ISSN: | 0929-5607 1572-8757 |
DOI: | 10.1007/s10450-017-9920-3 |