Loading…

Defect-mediated, thermally-activated encapsulation of metals at the surface of graphite

We show that 3 metals – Dy, Ru, and Cu – can form multilayer intercalated (encapsulated) islands at the graphite (0001) surface if 2 specific conditions are met: Defects are introduced on the graphite terraces to act as entry portals, and the metal deposition temperature is well above ambient. Focus...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2018-02, Vol.127, p.305-311
Main Authors: Zhou, Yinghui, Lii-Rosales, Ann, Kim, Minsung, Wallingford, Mark, Jing, Dapeng, Tringides, Michael C., Wang, Cai-Zhuang, Thiel, Patricia A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show that 3 metals – Dy, Ru, and Cu – can form multilayer intercalated (encapsulated) islands at the graphite (0001) surface if 2 specific conditions are met: Defects are introduced on the graphite terraces to act as entry portals, and the metal deposition temperature is well above ambient. Focusing on Dy as a prototype, we show that surface encapsulation is much different than bulk intercalation, because the encapsulated metal takes the form of bulk-like rafts of multilayer Dy, rather than the dilute, single-layer structure known for the bulk compound. Carbon-covered metallic rafts even form for relatively unreactive metals (Ru and Cu) which have no known bulk intercalation compound. [Display omitted]
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2017.10.103