Loading…

Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries

We report a facile in situ synthesis that utilizes readily accessible SiCl4 cross‐linking chemistry to create durable hybrid solid–electrolyte interphases (SEIs) on metal anodes. Such hybrid SEIs composed of Si‐interlinked OOCOR molecules that host LiCl salt exhibit fast charge‐transfer kinetics and...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2018-01, Vol.130 (4), p.1004-1008
Main Authors: Zhao, Qing, Tu, Zhengyuan, Wei, Shuya, Zhang, Kaihang, Choudhury, Snehashis, Liu, Xiaotun, Archer, Lynden A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a facile in situ synthesis that utilizes readily accessible SiCl4 cross‐linking chemistry to create durable hybrid solid–electrolyte interphases (SEIs) on metal anodes. Such hybrid SEIs composed of Si‐interlinked OOCOR molecules that host LiCl salt exhibit fast charge‐transfer kinetics and as much as five‐times higher exchange current densities, in comparison to their spontaneously formed analogues. Electrochemical analysis and direct optical visualization of Li and Na deposition in symmetric Li/Li and Na/Na cells show that the hybrid SEI provides excellent morphological control at high current densities (3–5 mA cm−2) for Li and even for notoriously unstable Na metal anodes. The fast interfacial transport attributes of the SEI are also found to be beneficial for Li‐S cells and stable electrochemical cycling was achieved in galvanostatic studies at rates as high as 2 C. Our work therefore provides a promising approach towards rational design of multifunctional, elastic SEIs that overcome the most serious limitations of spontaneously formed interphases on high‐capacity metal anodes. Elastische Grenzschichten zwischen Elektrode und Elektrolyt (SEI) wurden auf reaktiven Metallanoden abgeschieden. Sie bestehen aus verknüpften organischen Molekülen, die als Wirt für anorganische Salze fungieren, und können Volumenänderungen der Anoden ausgleichen sowie für schnellen Ionentransport über die Grenzflächen sorgen. Solche Li‐Li‐, Li‐S‐, Li‐Li4Ti5O12‐ und Na‐Na‐Zellen sind chemisch und physikalisch außergewöhnlich stabil.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201711598