Loading…
Vaccination allocation in large dynamic networks
Network infections that are already in progress cause challenges to those officers trying to preserve those nodes not yet infected. Static solutions can take advantage of global knowledge of the network to produce quick and approximate answers for those members who should be vaccinated. In dynamic s...
Saved in:
Published in: | Journal of big data 2017-01, Vol.4 (1), p.1-17, Article 2 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3274-370206d1e6c601e9a2216f3363e0edc05564b8500d6af0649b56eb4a2638806b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3274-370206d1e6c601e9a2216f3363e0edc05564b8500d6af0649b56eb4a2638806b3 |
container_end_page | 17 |
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of big data |
container_volume | 4 |
creator | Zhan, Justin Rafalski, Timothy Stashkevich, Gennady Verenich, Edward |
description | Network infections that are already in progress cause challenges to those officers trying to preserve those nodes not yet infected. Static solutions can take advantage of global knowledge of the network to produce quick and approximate answers for those members who should be vaccinated. In dynamic situations however, small changes can severely alter those static solutions making them irrelevant. Yet in dynamic situations it can not be known with certainty which small changes will affect the solution and those that will not. Computational resources are wasted recalculating a global solution for the entire network, when a local recalculation may be enough. This paper presents a dynamic node vaccination solution that seeks to take advantage of these local recalculations. |
doi_str_mv | 10.1186/s40537-016-0061-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1987896087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1987896087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3274-370206d1e6c601e9a2216f3363e0edc05564b8500d6af0649b56eb4a2638806b3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEhX0B7BFYja8ZzsvzogqvqRKLMBqOY5TpaROsVuh_ntchaEL07vDPfdJh7EbhDtETfdJQSkrDkgcgJCrMzYTWBNHxPL8JF-yeUprAECZEVIzBp_WuT7YXT-Gwg7D6KbYh2KwceWL9hDspndF8LufMX6la3bR2SH5-d-9Yh9Pj--LF758e35dPCy5k6JSXFYggFr05AjQ11YIpE5Kkh5866DM3xtdArRkOyBVNyX5RllBUmugRl6x22l3G8fvvU87sx73MeSXBmtd6ZpAV7mFU8vFMaXoO7ON_cbGg0EwRzdmcmOyG3N0Y1RmxMSk3A0rH0-W_4V-AQqhZA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987896087</pqid></control><display><type>article</type><title>Vaccination allocation in large dynamic networks</title><source>ABI/INFORM global</source><source>Publicly Available Content Database</source><source>Social Science Premium Collection</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Zhan, Justin ; Rafalski, Timothy ; Stashkevich, Gennady ; Verenich, Edward</creator><creatorcontrib>Zhan, Justin ; Rafalski, Timothy ; Stashkevich, Gennady ; Verenich, Edward</creatorcontrib><description>Network infections that are already in progress cause challenges to those officers trying to preserve those nodes not yet infected. Static solutions can take advantage of global knowledge of the network to produce quick and approximate answers for those members who should be vaccinated. In dynamic situations however, small changes can severely alter those static solutions making them irrelevant. Yet in dynamic situations it can not be known with certainty which small changes will affect the solution and those that will not. Computational resources are wasted recalculating a global solution for the entire network, when a local recalculation may be enough. This paper presents a dynamic node vaccination solution that seeks to take advantage of these local recalculations.</description><identifier>ISSN: 2196-1115</identifier><identifier>EISSN: 2196-1115</identifier><identifier>DOI: 10.1186/s40537-016-0061-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Big Data ; Communications Engineering ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Database Management ; Immunization ; Information Storage and Retrieval ; Knowledge management ; Mathematical Applications in Computer Science ; Networks</subject><ispartof>Journal of big data, 2017-01, Vol.4 (1), p.1-17, Article 2</ispartof><rights>The Author(s) 2017</rights><rights>Journal of Big Data is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3274-370206d1e6c601e9a2216f3363e0edc05564b8500d6af0649b56eb4a2638806b3</citedby><cites>FETCH-LOGICAL-c3274-370206d1e6c601e9a2216f3363e0edc05564b8500d6af0649b56eb4a2638806b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1987896087?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,21394,25753,27924,27925,33611,36060,37012,43733,44363,44590</link.rule.ids></links><search><creatorcontrib>Zhan, Justin</creatorcontrib><creatorcontrib>Rafalski, Timothy</creatorcontrib><creatorcontrib>Stashkevich, Gennady</creatorcontrib><creatorcontrib>Verenich, Edward</creatorcontrib><title>Vaccination allocation in large dynamic networks</title><title>Journal of big data</title><addtitle>J Big Data</addtitle><description>Network infections that are already in progress cause challenges to those officers trying to preserve those nodes not yet infected. Static solutions can take advantage of global knowledge of the network to produce quick and approximate answers for those members who should be vaccinated. In dynamic situations however, small changes can severely alter those static solutions making them irrelevant. Yet in dynamic situations it can not be known with certainty which small changes will affect the solution and those that will not. Computational resources are wasted recalculating a global solution for the entire network, when a local recalculation may be enough. This paper presents a dynamic node vaccination solution that seeks to take advantage of these local recalculations.</description><subject>Big Data</subject><subject>Communications Engineering</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Immunization</subject><subject>Information Storage and Retrieval</subject><subject>Knowledge management</subject><subject>Mathematical Applications in Computer Science</subject><subject>Networks</subject><issn>2196-1115</issn><issn>2196-1115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1kD1PwzAURS0EEhX0B7BFYja8ZzsvzogqvqRKLMBqOY5TpaROsVuh_ntchaEL07vDPfdJh7EbhDtETfdJQSkrDkgcgJCrMzYTWBNHxPL8JF-yeUprAECZEVIzBp_WuT7YXT-Gwg7D6KbYh2KwceWL9hDspndF8LufMX6la3bR2SH5-d-9Yh9Pj--LF758e35dPCy5k6JSXFYggFr05AjQ11YIpE5Kkh5866DM3xtdArRkOyBVNyX5RllBUmugRl6x22l3G8fvvU87sx73MeSXBmtd6ZpAV7mFU8vFMaXoO7ON_cbGg0EwRzdmcmOyG3N0Y1RmxMSk3A0rH0-W_4V-AQqhZA8</recordid><startdate>20170113</startdate><enddate>20170113</enddate><creator>Zhan, Justin</creator><creator>Rafalski, Timothy</creator><creator>Stashkevich, Gennady</creator><creator>Verenich, Edward</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88J</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170113</creationdate><title>Vaccination allocation in large dynamic networks</title><author>Zhan, Justin ; Rafalski, Timothy ; Stashkevich, Gennady ; Verenich, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3274-370206d1e6c601e9a2216f3363e0edc05564b8500d6af0649b56eb4a2638806b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Big Data</topic><topic>Communications Engineering</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Immunization</topic><topic>Information Storage and Retrieval</topic><topic>Knowledge management</topic><topic>Mathematical Applications in Computer Science</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Justin</creatorcontrib><creatorcontrib>Rafalski, Timothy</creatorcontrib><creatorcontrib>Stashkevich, Gennady</creatorcontrib><creatorcontrib>Verenich, Edward</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Justin</au><au>Rafalski, Timothy</au><au>Stashkevich, Gennady</au><au>Verenich, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vaccination allocation in large dynamic networks</atitle><jtitle>Journal of big data</jtitle><stitle>J Big Data</stitle><date>2017-01-13</date><risdate>2017</risdate><volume>4</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>2</artnum><issn>2196-1115</issn><eissn>2196-1115</eissn><abstract>Network infections that are already in progress cause challenges to those officers trying to preserve those nodes not yet infected. Static solutions can take advantage of global knowledge of the network to produce quick and approximate answers for those members who should be vaccinated. In dynamic situations however, small changes can severely alter those static solutions making them irrelevant. Yet in dynamic situations it can not be known with certainty which small changes will affect the solution and those that will not. Computational resources are wasted recalculating a global solution for the entire network, when a local recalculation may be enough. This paper presents a dynamic node vaccination solution that seeks to take advantage of these local recalculations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s40537-016-0061-4</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-1115 |
ispartof | Journal of big data, 2017-01, Vol.4 (1), p.1-17, Article 2 |
issn | 2196-1115 2196-1115 |
language | eng |
recordid | cdi_proquest_journals_1987896087 |
source | ABI/INFORM global; Publicly Available Content Database; Social Science Premium Collection; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Big Data Communications Engineering Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Database Management Immunization Information Storage and Retrieval Knowledge management Mathematical Applications in Computer Science Networks |
title | Vaccination allocation in large dynamic networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vaccination%20allocation%20in%20large%20dynamic%20networks&rft.jtitle=Journal%20of%20big%20data&rft.au=Zhan,%20Justin&rft.date=2017-01-13&rft.volume=4&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=2&rft.issn=2196-1115&rft.eissn=2196-1115&rft_id=info:doi/10.1186/s40537-016-0061-4&rft_dat=%3Cproquest_cross%3E1987896087%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3274-370206d1e6c601e9a2216f3363e0edc05564b8500d6af0649b56eb4a2638806b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1987896087&rft_id=info:pmid/&rfr_iscdi=true |