Loading…

Constrained near-optimal control of a wave energy converter in three oscillation modes

This paper investigates the performance of a small axisymmetric buoy under wave-by-wave near optimal control in surge, heave, and pitch modes in long-crested irregular waves. Wave prediction is obtained using a deterministic propagation model. The paper describes the overall formulation leading up t...

Full description

Saved in:
Bibliographic Details
Published in:Applied ocean research 2017-12, Vol.69, p.126-137
Main Authors: Korde, Umesh A., Lyu, Jianyang, Robinett, Rush D., Wilson, David G., Bacelli, Giorgio, Abdelkhalik, Ossama O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates the performance of a small axisymmetric buoy under wave-by-wave near optimal control in surge, heave, and pitch modes in long-crested irregular waves. Wave prediction is obtained using a deterministic propagation model. The paper describes the overall formulation leading up to the derivation of the feedforward control forces in surge and heave, and the control moment in pitch. The radiation coupling between surge and pitch modes is accounted for in the model. Actuation is relative to deeply submerged reaction masses. Heave oscillations are constrained by the swept-volume limit. Oscillation constraints are also applied on the surge and pitch oscillations. The paper discusses time-domain simulations for an irregular wave input with and without the present control. Also discussed are results obtained over a range of irregular wave conditions derived for energy periods from 7s to 17s, and a significant wave height of 1m. It is found that, while the gains in power capture enabled by the present control are significant, the actuation forces are also very large, given the small size of the buoy. Further, due to the small size, heave is found to be the dominant contributor to power capture, with relatively modest contributions from surge and pitch.
ISSN:0141-1187
1879-1549
DOI:10.1016/j.apor.2017.10.004