Loading…

Irrationality exponent, Hausdorff dimension and effectivization

We generalize the classical theorem by Jarnik and Besicovitch on the irrationality exponents of real numbers and Hausdorff dimension and show that the two notions are independent. For any real number a greater than or equal to 2 and any non-negative real b be less than or equal to 2 /  a , we show t...

Full description

Saved in:
Bibliographic Details
Published in:Monatshefte für Mathematik 2018-02, Vol.185 (2), p.167-188
Main Authors: Becher, Verónica, Reimann, Jan, Slaman, Theodore A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-d1957724c9b877c0668915c2dc501be7c8c42224747eb585d50bf3d8c80485713
cites cdi_FETCH-LOGICAL-c359t-d1957724c9b877c0668915c2dc501be7c8c42224747eb585d50bf3d8c80485713
container_end_page 188
container_issue 2
container_start_page 167
container_title Monatshefte für Mathematik
container_volume 185
creator Becher, Verónica
Reimann, Jan
Slaman, Theodore A.
description We generalize the classical theorem by Jarnik and Besicovitch on the irrationality exponents of real numbers and Hausdorff dimension and show that the two notions are independent. For any real number a greater than or equal to 2 and any non-negative real b be less than or equal to 2 /  a , we show that there is a Cantor-like set with Hausdorff dimension equal to b such that, with respect to its uniform measure, almost all real numbers have irrationality exponent equal to  a . We give an analogous result relating the irrationality exponent and the effective Hausdorff dimension of individual real numbers. We prove that there is a Cantor-like set such that, with respect to its uniform measure, almost all elements in the set have effective Hausdorff dimension equal to  b and irrationality exponent equal to  a . In each case, we obtain the desired set as a distinguished path in a tree of Cantor sets.
doi_str_mv 10.1007/s00605-017-1094-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1989231979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989231979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d1957724c9b877c0668915c2dc501be7c8c42224747eb585d50bf3d8c80485713</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqXwAGyRWDHc69ixPSFUAa1UiQVmK_EPStUmwU4Q5elJCQML013O-XR1CLlEuEEAeZsAChAUUFIEzSk7IjPkeUEFKDwmMwBWUM2EOCVnKW0AAPNCz8jdKsayr9um3Nb9PvOfXdv4pr_OluWQXBtDyFy9800akaxsXOZD8LavP-qvH-2cnIRym_zF752T18eHl8WSrp-fVov7NbW50D11qIWUjFtdKSktFIXSKCxzVgBWXlplOWOMSy59JZRwAqqQO2UVcCUk5nNyNe12sX0ffOrNph3i-HUyqJVmOWqpRwonysY2peiD6WK9K-PeIJhDJzN1MmMnc-hk2OiwyUkj27z5-Gf5X-kbU4Npvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989231979</pqid></control><display><type>article</type><title>Irrationality exponent, Hausdorff dimension and effectivization</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Becher, Verónica ; Reimann, Jan ; Slaman, Theodore A.</creator><creatorcontrib>Becher, Verónica ; Reimann, Jan ; Slaman, Theodore A.</creatorcontrib><description>We generalize the classical theorem by Jarnik and Besicovitch on the irrationality exponents of real numbers and Hausdorff dimension and show that the two notions are independent. For any real number a greater than or equal to 2 and any non-negative real b be less than or equal to 2 /  a , we show that there is a Cantor-like set with Hausdorff dimension equal to b such that, with respect to its uniform measure, almost all real numbers have irrationality exponent equal to  a . We give an analogous result relating the irrationality exponent and the effective Hausdorff dimension of individual real numbers. We prove that there is a Cantor-like set such that, with respect to its uniform measure, almost all elements in the set have effective Hausdorff dimension equal to  b and irrationality exponent equal to  a . In each case, we obtain the desired set as a distinguished path in a tree of Cantor sets.</description><identifier>ISSN: 0026-9255</identifier><identifier>EISSN: 1436-5081</identifier><identifier>DOI: 10.1007/s00605-017-1094-2</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Irrationality ; Mathematics ; Mathematics and Statistics ; Real numbers</subject><ispartof>Monatshefte für Mathematik, 2018-02, Vol.185 (2), p.167-188</ispartof><rights>Springer-Verlag GmbH Austria 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d1957724c9b877c0668915c2dc501be7c8c42224747eb585d50bf3d8c80485713</citedby><cites>FETCH-LOGICAL-c359t-d1957724c9b877c0668915c2dc501be7c8c42224747eb585d50bf3d8c80485713</cites><orcidid>0000-0003-1156-8390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Becher, Verónica</creatorcontrib><creatorcontrib>Reimann, Jan</creatorcontrib><creatorcontrib>Slaman, Theodore A.</creatorcontrib><title>Irrationality exponent, Hausdorff dimension and effectivization</title><title>Monatshefte für Mathematik</title><addtitle>Monatsh Math</addtitle><description>We generalize the classical theorem by Jarnik and Besicovitch on the irrationality exponents of real numbers and Hausdorff dimension and show that the two notions are independent. For any real number a greater than or equal to 2 and any non-negative real b be less than or equal to 2 /  a , we show that there is a Cantor-like set with Hausdorff dimension equal to b such that, with respect to its uniform measure, almost all real numbers have irrationality exponent equal to  a . We give an analogous result relating the irrationality exponent and the effective Hausdorff dimension of individual real numbers. We prove that there is a Cantor-like set such that, with respect to its uniform measure, almost all elements in the set have effective Hausdorff dimension equal to  b and irrationality exponent equal to  a . In each case, we obtain the desired set as a distinguished path in a tree of Cantor sets.</description><subject>Irrationality</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Real numbers</subject><issn>0026-9255</issn><issn>1436-5081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EEqXwAGyRWDHc69ixPSFUAa1UiQVmK_EPStUmwU4Q5elJCQML013O-XR1CLlEuEEAeZsAChAUUFIEzSk7IjPkeUEFKDwmMwBWUM2EOCVnKW0AAPNCz8jdKsayr9um3Nb9PvOfXdv4pr_OluWQXBtDyFy9800akaxsXOZD8LavP-qvH-2cnIRym_zF752T18eHl8WSrp-fVov7NbW50D11qIWUjFtdKSktFIXSKCxzVgBWXlplOWOMSy59JZRwAqqQO2UVcCUk5nNyNe12sX0ffOrNph3i-HUyqJVmOWqpRwonysY2peiD6WK9K-PeIJhDJzN1MmMnc-hk2OiwyUkj27z5-Gf5X-kbU4Npvw</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Becher, Verónica</creator><creator>Reimann, Jan</creator><creator>Slaman, Theodore A.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1156-8390</orcidid></search><sort><creationdate>20180201</creationdate><title>Irrationality exponent, Hausdorff dimension and effectivization</title><author>Becher, Verónica ; Reimann, Jan ; Slaman, Theodore A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d1957724c9b877c0668915c2dc501be7c8c42224747eb585d50bf3d8c80485713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Irrationality</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Real numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becher, Verónica</creatorcontrib><creatorcontrib>Reimann, Jan</creatorcontrib><creatorcontrib>Slaman, Theodore A.</creatorcontrib><collection>CrossRef</collection><jtitle>Monatshefte für Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becher, Verónica</au><au>Reimann, Jan</au><au>Slaman, Theodore A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Irrationality exponent, Hausdorff dimension and effectivization</atitle><jtitle>Monatshefte für Mathematik</jtitle><stitle>Monatsh Math</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>185</volume><issue>2</issue><spage>167</spage><epage>188</epage><pages>167-188</pages><issn>0026-9255</issn><eissn>1436-5081</eissn><abstract>We generalize the classical theorem by Jarnik and Besicovitch on the irrationality exponents of real numbers and Hausdorff dimension and show that the two notions are independent. For any real number a greater than or equal to 2 and any non-negative real b be less than or equal to 2 /  a , we show that there is a Cantor-like set with Hausdorff dimension equal to b such that, with respect to its uniform measure, almost all real numbers have irrationality exponent equal to  a . We give an analogous result relating the irrationality exponent and the effective Hausdorff dimension of individual real numbers. We prove that there is a Cantor-like set such that, with respect to its uniform measure, almost all elements in the set have effective Hausdorff dimension equal to  b and irrationality exponent equal to  a . In each case, we obtain the desired set as a distinguished path in a tree of Cantor sets.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00605-017-1094-2</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-1156-8390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-9255
ispartof Monatshefte für Mathematik, 2018-02, Vol.185 (2), p.167-188
issn 0026-9255
1436-5081
language eng
recordid cdi_proquest_journals_1989231979
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Irrationality
Mathematics
Mathematics and Statistics
Real numbers
title Irrationality exponent, Hausdorff dimension and effectivization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Irrationality%20exponent,%20Hausdorff%20dimension%20and%20effectivization&rft.jtitle=Monatshefte%20f%C3%BCr%20Mathematik&rft.au=Becher,%20Ver%C3%B3nica&rft.date=2018-02-01&rft.volume=185&rft.issue=2&rft.spage=167&rft.epage=188&rft.pages=167-188&rft.issn=0026-9255&rft.eissn=1436-5081&rft_id=info:doi/10.1007/s00605-017-1094-2&rft_dat=%3Cproquest_cross%3E1989231979%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-d1957724c9b877c0668915c2dc501be7c8c42224747eb585d50bf3d8c80485713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1989231979&rft_id=info:pmid/&rfr_iscdi=true