Loading…
Optimal solution of a total time distribution problem
Let G = ( F, E, A) be a connected graph representing a distribution network k items. The elements of D ⊆ V represent demand centers, while Q ⊆ V contains the suppliers. Every node q i ϵ Q can supply the p qi 1 , p qi 2 , … items. To each node q i , is associated a weight c( q i ), which represents i...
Saved in:
Published in: | International journal of production economics 1996-08, Vol.45 (1), p.473-478 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-619316286dafd770cd393a7157fefe33214d78cee741dcdcf741c864a2ab63433 |
container_end_page | 478 |
container_issue | 1 |
container_start_page | 473 |
container_title | International journal of production economics |
container_volume | 45 |
creator | Tsouros, C Satratzemi, M |
description | Let
G = (
F,
E,
A) be a connected graph representing a distribution network
k items. The elements of
D ⊆
V represent demand centers, while
Q ⊆
V contains the suppliers. Every node
q
i
ϵ
Q can supply the
p
qi
1
,
p
qi
2
, … items. To each node
q
i
, is associated a weight
c(
q
i
), which represents its installation cost. Every node
d
j
ϵ
D requires the
p′
d
j
1
,
p′
d
j
n2
h. items. Each item
p
j
claims a delivery time at most
t
j
. A weight
a(
x,
y) is associated with every arc (
x,
y)
ϵ
E, which denotes the needed time to reach node y directly from node
x. In this paper a method is developed which detects a subset
Q
∗ ⊆ Q
in order to minimize the total delivery time under a given budget restriction. |
doi_str_mv | 10.1016/0925-5273(95)00148-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_198945318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0925527395001484</els_id><sourcerecordid>10533596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-619316286dafd770cd393a7157fefe33214d78cee741dcdcf741c864a2ab63433</originalsourceid><addsrcrecordid>eNp9UE1PAyEUJEYTa_UfeNh40sMqLLDAxcQ0fiVNetEzofA20rRlBdqk_17WNT164D3CezPDDELXBN8TTNoHrBpe80bQW8XvMCZM1uwETYgUtBZcqFM0Oa6co4uUVhhjQaScIL7os9-YdZXCepd92Fahq0yVQy5vZQKV8ylHvxyHfQzLNWwu0Vln1gmu_voUfb48f8ze6vni9X32NK8tZSrXLVGUtI1snemcENg6qqgRhIsOOqC0IcwJaQEEI84625VuZctMY5YtZZRO0c3IW3S_d5CyXoVd3BZJTZRUjFMiyxIbl2wMKUXodB-LpXjQBOshHz2Y14N5rbj-zUezApuPsAg92CMGAIoY2KD3mhrGSzmUQ5RqS_PDVdNS-2FaGJmQ-itvCt3jSAclj72HqJP1sLXgfASbtQv-___8AL5HhUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198945318</pqid></control><display><type>article</type><title>Optimal solution of a total time distribution problem</title><source>Elsevier</source><creator>Tsouros, C ; Satratzemi, M</creator><creatorcontrib>Tsouros, C ; Satratzemi, M</creatorcontrib><description>Let
G = (
F,
E,
A) be a connected graph representing a distribution network
k items. The elements of
D ⊆
V represent demand centers, while
Q ⊆
V contains the suppliers. Every node
q
i
ϵ
Q can supply the
p
qi
1
,
p
qi
2
, … items. To each node
q
i
, is associated a weight
c(
q
i
), which represents its installation cost. Every node
d
j
ϵ
D requires the
p′
d
j
1
,
p′
d
j
n2
h. items. Each item
p
j
claims a delivery time at most
t
j
. A weight
a(
x,
y) is associated with every arc (
x,
y)
ϵ
E, which denotes the needed time to reach node y directly from node
x. In this paper a method is developed which detects a subset
Q
∗ ⊆ Q
in order to minimize the total delivery time under a given budget restriction.</description><identifier>ISSN: 0925-5273</identifier><identifier>EISSN: 1873-7579</identifier><identifier>DOI: 10.1016/0925-5273(95)00148-4</identifier><identifier>CODEN: IJPCEY</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithm ; Algorithms ; Distribution costs ; Distribution network ; Distribution planning ; Facilities planning ; Facility location ; Graphs ; Inventory management ; Logistics ; Optimization ; Site selection ; Studies ; Suppliers</subject><ispartof>International journal of production economics, 1996-08, Vol.45 (1), p.473-478</ispartof><rights>1996</rights><rights>Copyright Elsevier Sequoia S.A. Aug 1, 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-619316286dafd770cd393a7157fefe33214d78cee741dcdcf741c864a2ab63433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeproeco/v_3a45_3ay_3a1996_3ai_3a1-3_3ap_3a473-478.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsouros, C</creatorcontrib><creatorcontrib>Satratzemi, M</creatorcontrib><title>Optimal solution of a total time distribution problem</title><title>International journal of production economics</title><description>Let
G = (
F,
E,
A) be a connected graph representing a distribution network
k items. The elements of
D ⊆
V represent demand centers, while
Q ⊆
V contains the suppliers. Every node
q
i
ϵ
Q can supply the
p
qi
1
,
p
qi
2
, … items. To each node
q
i
, is associated a weight
c(
q
i
), which represents its installation cost. Every node
d
j
ϵ
D requires the
p′
d
j
1
,
p′
d
j
n2
h. items. Each item
p
j
claims a delivery time at most
t
j
. A weight
a(
x,
y) is associated with every arc (
x,
y)
ϵ
E, which denotes the needed time to reach node y directly from node
x. In this paper a method is developed which detects a subset
Q
∗ ⊆ Q
in order to minimize the total delivery time under a given budget restriction.</description><subject>Algorithm</subject><subject>Algorithms</subject><subject>Distribution costs</subject><subject>Distribution network</subject><subject>Distribution planning</subject><subject>Facilities planning</subject><subject>Facility location</subject><subject>Graphs</subject><subject>Inventory management</subject><subject>Logistics</subject><subject>Optimization</subject><subject>Site selection</subject><subject>Studies</subject><subject>Suppliers</subject><issn>0925-5273</issn><issn>1873-7579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PAyEUJEYTa_UfeNh40sMqLLDAxcQ0fiVNetEzofA20rRlBdqk_17WNT164D3CezPDDELXBN8TTNoHrBpe80bQW8XvMCZM1uwETYgUtBZcqFM0Oa6co4uUVhhjQaScIL7os9-YdZXCepd92Fahq0yVQy5vZQKV8ylHvxyHfQzLNWwu0Vln1gmu_voUfb48f8ze6vni9X32NK8tZSrXLVGUtI1snemcENg6qqgRhIsOOqC0IcwJaQEEI84625VuZctMY5YtZZRO0c3IW3S_d5CyXoVd3BZJTZRUjFMiyxIbl2wMKUXodB-LpXjQBOshHz2Y14N5rbj-zUezApuPsAg92CMGAIoY2KD3mhrGSzmUQ5RqS_PDVdNS-2FaGJmQ-itvCt3jSAclj72HqJP1sLXgfASbtQv-___8AL5HhUA</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Tsouros, C</creator><creator>Satratzemi, M</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>19960801</creationdate><title>Optimal solution of a total time distribution problem</title><author>Tsouros, C ; Satratzemi, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-619316286dafd770cd393a7157fefe33214d78cee741dcdcf741c864a2ab63433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithm</topic><topic>Algorithms</topic><topic>Distribution costs</topic><topic>Distribution network</topic><topic>Distribution planning</topic><topic>Facilities planning</topic><topic>Facility location</topic><topic>Graphs</topic><topic>Inventory management</topic><topic>Logistics</topic><topic>Optimization</topic><topic>Site selection</topic><topic>Studies</topic><topic>Suppliers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsouros, C</creatorcontrib><creatorcontrib>Satratzemi, M</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of production economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsouros, C</au><au>Satratzemi, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal solution of a total time distribution problem</atitle><jtitle>International journal of production economics</jtitle><date>1996-08-01</date><risdate>1996</risdate><volume>45</volume><issue>1</issue><spage>473</spage><epage>478</epage><pages>473-478</pages><issn>0925-5273</issn><eissn>1873-7579</eissn><coden>IJPCEY</coden><abstract>Let
G = (
F,
E,
A) be a connected graph representing a distribution network
k items. The elements of
D ⊆
V represent demand centers, while
Q ⊆
V contains the suppliers. Every node
q
i
ϵ
Q can supply the
p
qi
1
,
p
qi
2
, … items. To each node
q
i
, is associated a weight
c(
q
i
), which represents its installation cost. Every node
d
j
ϵ
D requires the
p′
d
j
1
,
p′
d
j
n2
h. items. Each item
p
j
claims a delivery time at most
t
j
. A weight
a(
x,
y) is associated with every arc (
x,
y)
ϵ
E, which denotes the needed time to reach node y directly from node
x. In this paper a method is developed which detects a subset
Q
∗ ⊆ Q
in order to minimize the total delivery time under a given budget restriction.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0925-5273(95)00148-4</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5273 |
ispartof | International journal of production economics, 1996-08, Vol.45 (1), p.473-478 |
issn | 0925-5273 1873-7579 |
language | eng |
recordid | cdi_proquest_journals_198945318 |
source | Elsevier |
subjects | Algorithm Algorithms Distribution costs Distribution network Distribution planning Facilities planning Facility location Graphs Inventory management Logistics Optimization Site selection Studies Suppliers |
title | Optimal solution of a total time distribution problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20solution%20of%20a%20total%20time%20distribution%20problem&rft.jtitle=International%20journal%20of%20production%20economics&rft.au=Tsouros,%20C&rft.date=1996-08-01&rft.volume=45&rft.issue=1&rft.spage=473&rft.epage=478&rft.pages=473-478&rft.issn=0925-5273&rft.eissn=1873-7579&rft.coden=IJPCEY&rft_id=info:doi/10.1016/0925-5273(95)00148-4&rft_dat=%3Cproquest_cross%3E10533596%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-619316286dafd770cd393a7157fefe33214d78cee741dcdcf741c864a2ab63433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=198945318&rft_id=info:pmid/&rfr_iscdi=true |