Loading…

Self‐Compensation in Transparent Conducting F‐Doped SnO2

The factors limiting the conductivity of fluorine‐doped tin dioxide (FTO) produced via atmospheric pressure chemical vapor deposition are investigated. Modeling of the transport properties indicates that the measured Hall effect mobilities are far below the theoretical ionized impurity scattering li...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2018-01, Vol.28 (4), p.n/a
Main Authors: Swallow, Jack E. N., Williamson, Benjamin A. D., Whittles, Thomas J., Birkett, Max, Featherstone, Thomas J., Peng, Nianhua, Abbott, Alex, Farnworth, Mark, Cheetham, Kieran J., Warren, Paul, Scanlon, David O., Dhanak, Vin R., Veal, Tim D.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced functional materials
container_volume 28
creator Swallow, Jack E. N.
Williamson, Benjamin A. D.
Whittles, Thomas J.
Birkett, Max
Featherstone, Thomas J.
Peng, Nianhua
Abbott, Alex
Farnworth, Mark
Cheetham, Kieran J.
Warren, Paul
Scanlon, David O.
Dhanak, Vin R.
Veal, Tim D.
description The factors limiting the conductivity of fluorine‐doped tin dioxide (FTO) produced via atmospheric pressure chemical vapor deposition are investigated. Modeling of the transport properties indicates that the measured Hall effect mobilities are far below the theoretical ionized impurity scattering limit. Significant compensation of donors by acceptors is present with a compensation ratio of 0.5, indicating that for every two donors there is approximately one acceptor. Hybrid density functional theory calculations of defect and impurity formation energies indicate the most probable acceptor‐type defects. The fluorine interstitial defect has the lowest formation energy in the degenerate regime of FTO. Fluorine interstitials act as singly charged acceptors at the high Fermi levels corresponding to degenerately n‐type films. X‐ray photoemission spectroscopy of the fluorine impurities is consistent with the presence of substitutional FO donors and interstitial Fi in a roughly 2:1 ratio in agreement with the compensation ratio indicated by the transport modeling. Quantitative analysis through Hall effect, X‐ray photoemission spectroscopy, and calibrated secondary ion mass spectrometry further supports the presence of compensating fluorine‐related defects. Compensating acceptor defects dramatically reduce electronic performance of F:SnO2 transparent conductor grown by chemical vapor deposition. Electron carrier mobilities are seen to be greatly diminished from the theoretically predicted optimum. Using hybrid density functional theory calculations and experimental methods, and analysis, the defect responsible for self‐compensation in F:SnO2 is determined to be the fluorine interstitial.
doi_str_mv 10.1002/adfm.201701900
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1989563603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989563603</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3390-1584c7b27966f8978eb984ded7f3c2f1a6c2f250b0d0890f4fdfbfe7d73f136c3</originalsourceid><addsrcrecordid>eNo9kMtKw0AUhgdRsFa3rgOuU8_MJHMBNyU1KlS6aAV3wyQzIwnJJOaCdOcj-Iw-iSmVbs4FPv4fPoRuMSwwALnXxtULApgDlgBnaIYZZiEFIs5PN36_RFd9X8KEcRrN0MPWVu73-ydp6tb6Xg9F44PCB7tO-77VnfVDkDTejPlQ-I8gndBV01oTbP2GXKMLp6ve3vzvOXpLH3fJc7jePL0ky3VYUiohxLGIcp4RLhlzQnJhMykiYw13NCcOazZNEkMGBoQEFznjMme54dRhynI6R3fH3LZrPkfbD6psxs5PlQpLIWNGGdCJkkfqq6jsXrVdUeturzCogx510KNOetRylb6ePvoHmx9cYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989563603</pqid></control><display><type>article</type><title>Self‐Compensation in Transparent Conducting F‐Doped SnO2</title><source>Wiley</source><creator>Swallow, Jack E. N. ; Williamson, Benjamin A. D. ; Whittles, Thomas J. ; Birkett, Max ; Featherstone, Thomas J. ; Peng, Nianhua ; Abbott, Alex ; Farnworth, Mark ; Cheetham, Kieran J. ; Warren, Paul ; Scanlon, David O. ; Dhanak, Vin R. ; Veal, Tim D.</creator><creatorcontrib>Swallow, Jack E. N. ; Williamson, Benjamin A. D. ; Whittles, Thomas J. ; Birkett, Max ; Featherstone, Thomas J. ; Peng, Nianhua ; Abbott, Alex ; Farnworth, Mark ; Cheetham, Kieran J. ; Warren, Paul ; Scanlon, David O. ; Dhanak, Vin R. ; Veal, Tim D.</creatorcontrib><description>The factors limiting the conductivity of fluorine‐doped tin dioxide (FTO) produced via atmospheric pressure chemical vapor deposition are investigated. Modeling of the transport properties indicates that the measured Hall effect mobilities are far below the theoretical ionized impurity scattering limit. Significant compensation of donors by acceptors is present with a compensation ratio of 0.5, indicating that for every two donors there is approximately one acceptor. Hybrid density functional theory calculations of defect and impurity formation energies indicate the most probable acceptor‐type defects. The fluorine interstitial defect has the lowest formation energy in the degenerate regime of FTO. Fluorine interstitials act as singly charged acceptors at the high Fermi levels corresponding to degenerately n‐type films. X‐ray photoemission spectroscopy of the fluorine impurities is consistent with the presence of substitutional FO donors and interstitial Fi in a roughly 2:1 ratio in agreement with the compensation ratio indicated by the transport modeling. Quantitative analysis through Hall effect, X‐ray photoemission spectroscopy, and calibrated secondary ion mass spectrometry further supports the presence of compensating fluorine‐related defects. Compensating acceptor defects dramatically reduce electronic performance of F:SnO2 transparent conductor grown by chemical vapor deposition. Electron carrier mobilities are seen to be greatly diminished from the theoretically predicted optimum. Using hybrid density functional theory calculations and experimental methods, and analysis, the defect responsible for self‐compensation in F:SnO2 is determined to be the fluorine interstitial.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201701900</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Atmospheric models ; carrier transport ; Chemical vapor deposition ; Compensation ; Defects ; Density functional theory ; Electromagnetism ; Fluorine ; fluorine‐doped stannic oxide ; fluorine‐doped tin dioxide ; fluorine‐doped tin oxide ; Hall effect ; Impurities ; Interstitials ; Mass spectrometry ; Materials science ; Photoelectric emission ; Photoelectron spectroscopy ; Quantitative analysis ; Secondary ion mass spectrometry ; Self compensation ; Tin dioxide ; Transport properties</subject><ispartof>Advanced functional materials, 2018-01, Vol.28 (4), p.n/a</ispartof><rights>2017 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0610-5626 ; 0000-0002-6076-6820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Swallow, Jack E. N.</creatorcontrib><creatorcontrib>Williamson, Benjamin A. D.</creatorcontrib><creatorcontrib>Whittles, Thomas J.</creatorcontrib><creatorcontrib>Birkett, Max</creatorcontrib><creatorcontrib>Featherstone, Thomas J.</creatorcontrib><creatorcontrib>Peng, Nianhua</creatorcontrib><creatorcontrib>Abbott, Alex</creatorcontrib><creatorcontrib>Farnworth, Mark</creatorcontrib><creatorcontrib>Cheetham, Kieran J.</creatorcontrib><creatorcontrib>Warren, Paul</creatorcontrib><creatorcontrib>Scanlon, David O.</creatorcontrib><creatorcontrib>Dhanak, Vin R.</creatorcontrib><creatorcontrib>Veal, Tim D.</creatorcontrib><title>Self‐Compensation in Transparent Conducting F‐Doped SnO2</title><title>Advanced functional materials</title><description>The factors limiting the conductivity of fluorine‐doped tin dioxide (FTO) produced via atmospheric pressure chemical vapor deposition are investigated. Modeling of the transport properties indicates that the measured Hall effect mobilities are far below the theoretical ionized impurity scattering limit. Significant compensation of donors by acceptors is present with a compensation ratio of 0.5, indicating that for every two donors there is approximately one acceptor. Hybrid density functional theory calculations of defect and impurity formation energies indicate the most probable acceptor‐type defects. The fluorine interstitial defect has the lowest formation energy in the degenerate regime of FTO. Fluorine interstitials act as singly charged acceptors at the high Fermi levels corresponding to degenerately n‐type films. X‐ray photoemission spectroscopy of the fluorine impurities is consistent with the presence of substitutional FO donors and interstitial Fi in a roughly 2:1 ratio in agreement with the compensation ratio indicated by the transport modeling. Quantitative analysis through Hall effect, X‐ray photoemission spectroscopy, and calibrated secondary ion mass spectrometry further supports the presence of compensating fluorine‐related defects. Compensating acceptor defects dramatically reduce electronic performance of F:SnO2 transparent conductor grown by chemical vapor deposition. Electron carrier mobilities are seen to be greatly diminished from the theoretically predicted optimum. Using hybrid density functional theory calculations and experimental methods, and analysis, the defect responsible for self‐compensation in F:SnO2 is determined to be the fluorine interstitial.</description><subject>Atmospheric models</subject><subject>carrier transport</subject><subject>Chemical vapor deposition</subject><subject>Compensation</subject><subject>Defects</subject><subject>Density functional theory</subject><subject>Electromagnetism</subject><subject>Fluorine</subject><subject>fluorine‐doped stannic oxide</subject><subject>fluorine‐doped tin dioxide</subject><subject>fluorine‐doped tin oxide</subject><subject>Hall effect</subject><subject>Impurities</subject><subject>Interstitials</subject><subject>Mass spectrometry</subject><subject>Materials science</subject><subject>Photoelectric emission</subject><subject>Photoelectron spectroscopy</subject><subject>Quantitative analysis</subject><subject>Secondary ion mass spectrometry</subject><subject>Self compensation</subject><subject>Tin dioxide</subject><subject>Transport properties</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kMtKw0AUhgdRsFa3rgOuU8_MJHMBNyU1KlS6aAV3wyQzIwnJJOaCdOcj-Iw-iSmVbs4FPv4fPoRuMSwwALnXxtULApgDlgBnaIYZZiEFIs5PN36_RFd9X8KEcRrN0MPWVu73-ydp6tb6Xg9F44PCB7tO-77VnfVDkDTejPlQ-I8gndBV01oTbP2GXKMLp6ve3vzvOXpLH3fJc7jePL0ky3VYUiohxLGIcp4RLhlzQnJhMykiYw13NCcOazZNEkMGBoQEFznjMme54dRhynI6R3fH3LZrPkfbD6psxs5PlQpLIWNGGdCJkkfqq6jsXrVdUeturzCogx510KNOetRylb6ePvoHmx9cYQ</recordid><startdate>20180124</startdate><enddate>20180124</enddate><creator>Swallow, Jack E. N.</creator><creator>Williamson, Benjamin A. D.</creator><creator>Whittles, Thomas J.</creator><creator>Birkett, Max</creator><creator>Featherstone, Thomas J.</creator><creator>Peng, Nianhua</creator><creator>Abbott, Alex</creator><creator>Farnworth, Mark</creator><creator>Cheetham, Kieran J.</creator><creator>Warren, Paul</creator><creator>Scanlon, David O.</creator><creator>Dhanak, Vin R.</creator><creator>Veal, Tim D.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0610-5626</orcidid><orcidid>https://orcid.org/0000-0002-6076-6820</orcidid></search><sort><creationdate>20180124</creationdate><title>Self‐Compensation in Transparent Conducting F‐Doped SnO2</title><author>Swallow, Jack E. N. ; Williamson, Benjamin A. D. ; Whittles, Thomas J. ; Birkett, Max ; Featherstone, Thomas J. ; Peng, Nianhua ; Abbott, Alex ; Farnworth, Mark ; Cheetham, Kieran J. ; Warren, Paul ; Scanlon, David O. ; Dhanak, Vin R. ; Veal, Tim D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3390-1584c7b27966f8978eb984ded7f3c2f1a6c2f250b0d0890f4fdfbfe7d73f136c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric models</topic><topic>carrier transport</topic><topic>Chemical vapor deposition</topic><topic>Compensation</topic><topic>Defects</topic><topic>Density functional theory</topic><topic>Electromagnetism</topic><topic>Fluorine</topic><topic>fluorine‐doped stannic oxide</topic><topic>fluorine‐doped tin dioxide</topic><topic>fluorine‐doped tin oxide</topic><topic>Hall effect</topic><topic>Impurities</topic><topic>Interstitials</topic><topic>Mass spectrometry</topic><topic>Materials science</topic><topic>Photoelectric emission</topic><topic>Photoelectron spectroscopy</topic><topic>Quantitative analysis</topic><topic>Secondary ion mass spectrometry</topic><topic>Self compensation</topic><topic>Tin dioxide</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swallow, Jack E. N.</creatorcontrib><creatorcontrib>Williamson, Benjamin A. D.</creatorcontrib><creatorcontrib>Whittles, Thomas J.</creatorcontrib><creatorcontrib>Birkett, Max</creatorcontrib><creatorcontrib>Featherstone, Thomas J.</creatorcontrib><creatorcontrib>Peng, Nianhua</creatorcontrib><creatorcontrib>Abbott, Alex</creatorcontrib><creatorcontrib>Farnworth, Mark</creatorcontrib><creatorcontrib>Cheetham, Kieran J.</creatorcontrib><creatorcontrib>Warren, Paul</creatorcontrib><creatorcontrib>Scanlon, David O.</creatorcontrib><creatorcontrib>Dhanak, Vin R.</creatorcontrib><creatorcontrib>Veal, Tim D.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles(OpenAccess)</collection><collection>Wiley Online Library website</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swallow, Jack E. N.</au><au>Williamson, Benjamin A. D.</au><au>Whittles, Thomas J.</au><au>Birkett, Max</au><au>Featherstone, Thomas J.</au><au>Peng, Nianhua</au><au>Abbott, Alex</au><au>Farnworth, Mark</au><au>Cheetham, Kieran J.</au><au>Warren, Paul</au><au>Scanlon, David O.</au><au>Dhanak, Vin R.</au><au>Veal, Tim D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Compensation in Transparent Conducting F‐Doped SnO2</atitle><jtitle>Advanced functional materials</jtitle><date>2018-01-24</date><risdate>2018</risdate><volume>28</volume><issue>4</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The factors limiting the conductivity of fluorine‐doped tin dioxide (FTO) produced via atmospheric pressure chemical vapor deposition are investigated. Modeling of the transport properties indicates that the measured Hall effect mobilities are far below the theoretical ionized impurity scattering limit. Significant compensation of donors by acceptors is present with a compensation ratio of 0.5, indicating that for every two donors there is approximately one acceptor. Hybrid density functional theory calculations of defect and impurity formation energies indicate the most probable acceptor‐type defects. The fluorine interstitial defect has the lowest formation energy in the degenerate regime of FTO. Fluorine interstitials act as singly charged acceptors at the high Fermi levels corresponding to degenerately n‐type films. X‐ray photoemission spectroscopy of the fluorine impurities is consistent with the presence of substitutional FO donors and interstitial Fi in a roughly 2:1 ratio in agreement with the compensation ratio indicated by the transport modeling. Quantitative analysis through Hall effect, X‐ray photoemission spectroscopy, and calibrated secondary ion mass spectrometry further supports the presence of compensating fluorine‐related defects. Compensating acceptor defects dramatically reduce electronic performance of F:SnO2 transparent conductor grown by chemical vapor deposition. Electron carrier mobilities are seen to be greatly diminished from the theoretically predicted optimum. Using hybrid density functional theory calculations and experimental methods, and analysis, the defect responsible for self‐compensation in F:SnO2 is determined to be the fluorine interstitial.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201701900</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0610-5626</orcidid><orcidid>https://orcid.org/0000-0002-6076-6820</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-01, Vol.28 (4), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_1989563603
source Wiley
subjects Atmospheric models
carrier transport
Chemical vapor deposition
Compensation
Defects
Density functional theory
Electromagnetism
Fluorine
fluorine‐doped stannic oxide
fluorine‐doped tin dioxide
fluorine‐doped tin oxide
Hall effect
Impurities
Interstitials
Mass spectrometry
Materials science
Photoelectric emission
Photoelectron spectroscopy
Quantitative analysis
Secondary ion mass spectrometry
Self compensation
Tin dioxide
Transport properties
title Self‐Compensation in Transparent Conducting F‐Doped SnO2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Compensation%20in%20Transparent%20Conducting%20F%E2%80%90Doped%20SnO2&rft.jtitle=Advanced%20functional%20materials&rft.au=Swallow,%20Jack%20E.%20N.&rft.date=2018-01-24&rft.volume=28&rft.issue=4&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201701900&rft_dat=%3Cproquest_wiley%3E1989563603%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j3390-1584c7b27966f8978eb984ded7f3c2f1a6c2f250b0d0890f4fdfbfe7d73f136c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1989563603&rft_id=info:pmid/&rfr_iscdi=true