Loading…
Vantage Point Counts and Monitoring Roe Deer
Vantage point counts (VPCs) are adopted to estimate the densities of roe deer (Capreolus capreolus) populations for harvest management. Thus, counts should be performed only within blocks without woodlands where it is possible to relate counts to block sizes. Alternatively, if VPCs are simply carrie...
Saved in:
Published in: | The Journal of wildlife management 2018-02, Vol.82 (2), p.354-361 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3235-c0ed5eb837da45aef23b694b4d9a21ed642f9131a95420c6a9235f8c8577b6af3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3235-c0ed5eb837da45aef23b694b4d9a21ed642f9131a95420c6a9235f8c8577b6af3 |
container_end_page | 361 |
container_issue | 2 |
container_start_page | 354 |
container_title | The Journal of wildlife management |
container_volume | 82 |
creator | ZACCARONI, MARCO DELL’AGNELLO, FILIPPO PONTI, GIULIA RIGA, FRANCESCO VESCOVINI, CHIARA FATTORINI, LORENZO |
description | Vantage point counts (VPCs) are adopted to estimate the densities of roe deer (Capreolus capreolus) populations for harvest management. Thus, counts should be performed only within blocks without woodlands where it is possible to relate counts to block sizes. Alternatively, if VPCs are simply carried out on all blocks in a study region, the expectations of total counts could be used as relative abundance indices. In most cases, surveying all blocks is too demanding because of the number of observers required, time, and organization. Therefore, VPCs are performed only on a portion of the blocks, and relative abundance indices are estimated from these counts. If the blocks are selected by means of probabilistic sampling schemes, then statistically sound estimators of total count expectations can be adopted. Therefore, the estimation of the sampling errors, construction of confidence intervals, and assessment of change are possible, together with a post hoc power analysis for evaluating the probability of failing to detect a change in the expectations. Our objective in this study is to consider sampling strategies that allow the performance of all these statistical steps and to check the performance of these strategies on a hunting district located in Tuscany, Italy, in which all the blocks were surveyed in 2013 and 2014. The results provide evidence of the imprecision of the estimators. Even for large sampling fractions of 40–50%, the relative standard errors never decreased below 20%, and the corresponding powers in detecting a change of 30% at a level α = 0:05 were |
doi_str_mv | 10.1002/jwmg.21385 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1989596492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26608874</jstor_id><sourcerecordid>26608874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3235-c0ed5eb837da45aef23b694b4d9a21ed642f9131a95420c6a9235f8c8577b6af3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMoOKcX70LBm9iZl19NjjJ1Kg5F_HULaZuOli2ZScfYf29n1aOnd3jf9x58CB0DHgHG5KJZL2YjAlTyHTQARbOUSMh20aBbkpQz-NhHBzE2GFMAKQbo_M241sxs8uRr1yZjv3JtTIwrk6l3detD7WbJs7fJlbXhEO1VZh7t0c8coteb65fxbfrwOLkbXz6kBSWUpwW2Jbe5pFlpGDe2IjQXiuWsVIaALQUjlQIKRnFGcCGM6qxKFpJnWS5MRYfotL-7DP5zZWOrG78KrnupQUnFlWCdMkRnPVUEH2OwlV6GemHCRgPW2xp6W0N_1-hg6OF1Pbebf0h9_z6d_DonvdPELsSfQ4TAUmaMfgExLmnn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989596492</pqid></control><display><type>article</type><title>Vantage Point Counts and Monitoring Roe Deer</title><source>Wiley</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>ZACCARONI, MARCO ; DELL’AGNELLO, FILIPPO ; PONTI, GIULIA ; RIGA, FRANCESCO ; VESCOVINI, CHIARA ; FATTORINI, LORENZO</creator><creatorcontrib>ZACCARONI, MARCO ; DELL’AGNELLO, FILIPPO ; PONTI, GIULIA ; RIGA, FRANCESCO ; VESCOVINI, CHIARA ; FATTORINI, LORENZO</creatorcontrib><description>Vantage point counts (VPCs) are adopted to estimate the densities of roe deer (Capreolus capreolus) populations for harvest management. Thus, counts should be performed only within blocks without woodlands where it is possible to relate counts to block sizes. Alternatively, if VPCs are simply carried out on all blocks in a study region, the expectations of total counts could be used as relative abundance indices. In most cases, surveying all blocks is too demanding because of the number of observers required, time, and organization. Therefore, VPCs are performed only on a portion of the blocks, and relative abundance indices are estimated from these counts. If the blocks are selected by means of probabilistic sampling schemes, then statistically sound estimators of total count expectations can be adopted. Therefore, the estimation of the sampling errors, construction of confidence intervals, and assessment of change are possible, together with a post hoc power analysis for evaluating the probability of failing to detect a change in the expectations. Our objective in this study is to consider sampling strategies that allow the performance of all these statistical steps and to check the performance of these strategies on a hunting district located in Tuscany, Italy, in which all the blocks were surveyed in 2013 and 2014. The results provide evidence of the imprecision of the estimators. Even for large sampling fractions of 40–50%, the relative standard errors never decreased below 20%, and the corresponding powers in detecting a change of 30% at a level α = 0:05 were <0.65. Our results highlight the need for efficient and robust alternative strategies.</description><identifier>ISSN: 0022-541X</identifier><identifier>EISSN: 1937-2817</identifier><identifier>DOI: 10.1002/jwmg.21385</identifier><language>eng</language><publisher>Bethesda: Wiley</publisher><subject>Abundance ; Animal populations ; area sampling ; Capreolus capreolus ; Change detection ; Confidence intervals ; Deer ; Estimators ; Horvitz‐Thompson estimation ; Hunting ; Monitoring ; Population (statistical) ; Population Ecology ; Relative abundance ; relative abundance indices ; Sampling ; Sampling error ; Statistical analysis ; Statistical methods ; statistical power ; Surveying ; Wildlife ; Wildlife management ; Woodlands</subject><ispartof>The Journal of wildlife management, 2018-02, Vol.82 (2), p.354-361</ispartof><rights>2017 The Wildlife Society</rights><rights>The Wildlife Society, 2017</rights><rights>The Wildlife Society, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3235-c0ed5eb837da45aef23b694b4d9a21ed642f9131a95420c6a9235f8c8577b6af3</citedby><cites>FETCH-LOGICAL-c3235-c0ed5eb837da45aef23b694b4d9a21ed642f9131a95420c6a9235f8c8577b6af3</cites><orcidid>0000-0002-3588-6476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26608874$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26608874$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids></links><search><creatorcontrib>ZACCARONI, MARCO</creatorcontrib><creatorcontrib>DELL’AGNELLO, FILIPPO</creatorcontrib><creatorcontrib>PONTI, GIULIA</creatorcontrib><creatorcontrib>RIGA, FRANCESCO</creatorcontrib><creatorcontrib>VESCOVINI, CHIARA</creatorcontrib><creatorcontrib>FATTORINI, LORENZO</creatorcontrib><title>Vantage Point Counts and Monitoring Roe Deer</title><title>The Journal of wildlife management</title><description>Vantage point counts (VPCs) are adopted to estimate the densities of roe deer (Capreolus capreolus) populations for harvest management. Thus, counts should be performed only within blocks without woodlands where it is possible to relate counts to block sizes. Alternatively, if VPCs are simply carried out on all blocks in a study region, the expectations of total counts could be used as relative abundance indices. In most cases, surveying all blocks is too demanding because of the number of observers required, time, and organization. Therefore, VPCs are performed only on a portion of the blocks, and relative abundance indices are estimated from these counts. If the blocks are selected by means of probabilistic sampling schemes, then statistically sound estimators of total count expectations can be adopted. Therefore, the estimation of the sampling errors, construction of confidence intervals, and assessment of change are possible, together with a post hoc power analysis for evaluating the probability of failing to detect a change in the expectations. Our objective in this study is to consider sampling strategies that allow the performance of all these statistical steps and to check the performance of these strategies on a hunting district located in Tuscany, Italy, in which all the blocks were surveyed in 2013 and 2014. The results provide evidence of the imprecision of the estimators. Even for large sampling fractions of 40–50%, the relative standard errors never decreased below 20%, and the corresponding powers in detecting a change of 30% at a level α = 0:05 were <0.65. Our results highlight the need for efficient and robust alternative strategies.</description><subject>Abundance</subject><subject>Animal populations</subject><subject>area sampling</subject><subject>Capreolus capreolus</subject><subject>Change detection</subject><subject>Confidence intervals</subject><subject>Deer</subject><subject>Estimators</subject><subject>Horvitz‐Thompson estimation</subject><subject>Hunting</subject><subject>Monitoring</subject><subject>Population (statistical)</subject><subject>Population Ecology</subject><subject>Relative abundance</subject><subject>relative abundance indices</subject><subject>Sampling</subject><subject>Sampling error</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>statistical power</subject><subject>Surveying</subject><subject>Wildlife</subject><subject>Wildlife management</subject><subject>Woodlands</subject><issn>0022-541X</issn><issn>1937-2817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUgIMoOKcX70LBm9iZl19NjjJ1Kg5F_HULaZuOli2ZScfYf29n1aOnd3jf9x58CB0DHgHG5KJZL2YjAlTyHTQARbOUSMh20aBbkpQz-NhHBzE2GFMAKQbo_M241sxs8uRr1yZjv3JtTIwrk6l3detD7WbJs7fJlbXhEO1VZh7t0c8coteb65fxbfrwOLkbXz6kBSWUpwW2Jbe5pFlpGDe2IjQXiuWsVIaALQUjlQIKRnFGcCGM6qxKFpJnWS5MRYfotL-7DP5zZWOrG78KrnupQUnFlWCdMkRnPVUEH2OwlV6GemHCRgPW2xp6W0N_1-hg6OF1Pbebf0h9_z6d_DonvdPELsSfQ4TAUmaMfgExLmnn</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>ZACCARONI, MARCO</creator><creator>DELL’AGNELLO, FILIPPO</creator><creator>PONTI, GIULIA</creator><creator>RIGA, FRANCESCO</creator><creator>VESCOVINI, CHIARA</creator><creator>FATTORINI, LORENZO</creator><general>Wiley</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7U6</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-3588-6476</orcidid></search><sort><creationdate>20180201</creationdate><title>Vantage Point Counts and Monitoring Roe Deer</title><author>ZACCARONI, MARCO ; DELL’AGNELLO, FILIPPO ; PONTI, GIULIA ; RIGA, FRANCESCO ; VESCOVINI, CHIARA ; FATTORINI, LORENZO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3235-c0ed5eb837da45aef23b694b4d9a21ed642f9131a95420c6a9235f8c8577b6af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abundance</topic><topic>Animal populations</topic><topic>area sampling</topic><topic>Capreolus capreolus</topic><topic>Change detection</topic><topic>Confidence intervals</topic><topic>Deer</topic><topic>Estimators</topic><topic>Horvitz‐Thompson estimation</topic><topic>Hunting</topic><topic>Monitoring</topic><topic>Population (statistical)</topic><topic>Population Ecology</topic><topic>Relative abundance</topic><topic>relative abundance indices</topic><topic>Sampling</topic><topic>Sampling error</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>statistical power</topic><topic>Surveying</topic><topic>Wildlife</topic><topic>Wildlife management</topic><topic>Woodlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZACCARONI, MARCO</creatorcontrib><creatorcontrib>DELL’AGNELLO, FILIPPO</creatorcontrib><creatorcontrib>PONTI, GIULIA</creatorcontrib><creatorcontrib>RIGA, FRANCESCO</creatorcontrib><creatorcontrib>VESCOVINI, CHIARA</creatorcontrib><creatorcontrib>FATTORINI, LORENZO</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Sustainability Science Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>The Journal of wildlife management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZACCARONI, MARCO</au><au>DELL’AGNELLO, FILIPPO</au><au>PONTI, GIULIA</au><au>RIGA, FRANCESCO</au><au>VESCOVINI, CHIARA</au><au>FATTORINI, LORENZO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vantage Point Counts and Monitoring Roe Deer</atitle><jtitle>The Journal of wildlife management</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>82</volume><issue>2</issue><spage>354</spage><epage>361</epage><pages>354-361</pages><issn>0022-541X</issn><eissn>1937-2817</eissn><abstract>Vantage point counts (VPCs) are adopted to estimate the densities of roe deer (Capreolus capreolus) populations for harvest management. Thus, counts should be performed only within blocks without woodlands where it is possible to relate counts to block sizes. Alternatively, if VPCs are simply carried out on all blocks in a study region, the expectations of total counts could be used as relative abundance indices. In most cases, surveying all blocks is too demanding because of the number of observers required, time, and organization. Therefore, VPCs are performed only on a portion of the blocks, and relative abundance indices are estimated from these counts. If the blocks are selected by means of probabilistic sampling schemes, then statistically sound estimators of total count expectations can be adopted. Therefore, the estimation of the sampling errors, construction of confidence intervals, and assessment of change are possible, together with a post hoc power analysis for evaluating the probability of failing to detect a change in the expectations. Our objective in this study is to consider sampling strategies that allow the performance of all these statistical steps and to check the performance of these strategies on a hunting district located in Tuscany, Italy, in which all the blocks were surveyed in 2013 and 2014. The results provide evidence of the imprecision of the estimators. Even for large sampling fractions of 40–50%, the relative standard errors never decreased below 20%, and the corresponding powers in detecting a change of 30% at a level α = 0:05 were <0.65. Our results highlight the need for efficient and robust alternative strategies.</abstract><cop>Bethesda</cop><pub>Wiley</pub><doi>10.1002/jwmg.21385</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3588-6476</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-541X |
ispartof | The Journal of wildlife management, 2018-02, Vol.82 (2), p.354-361 |
issn | 0022-541X 1937-2817 |
language | eng |
recordid | cdi_proquest_journals_1989596492 |
source | Wiley; JSTOR Archival Journals and Primary Sources Collection |
subjects | Abundance Animal populations area sampling Capreolus capreolus Change detection Confidence intervals Deer Estimators Horvitz‐Thompson estimation Hunting Monitoring Population (statistical) Population Ecology Relative abundance relative abundance indices Sampling Sampling error Statistical analysis Statistical methods statistical power Surveying Wildlife Wildlife management Woodlands |
title | Vantage Point Counts and Monitoring Roe Deer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vantage%20Point%20Counts%20and%20Monitoring%20Roe%20Deer&rft.jtitle=The%20Journal%20of%20wildlife%20management&rft.au=ZACCARONI,%20MARCO&rft.date=2018-02-01&rft.volume=82&rft.issue=2&rft.spage=354&rft.epage=361&rft.pages=354-361&rft.issn=0022-541X&rft.eissn=1937-2817&rft_id=info:doi/10.1002/jwmg.21385&rft_dat=%3Cjstor_proqu%3E26608874%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3235-c0ed5eb837da45aef23b694b4d9a21ed642f9131a95420c6a9235f8c8577b6af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1989596492&rft_id=info:pmid/&rft_jstor_id=26608874&rfr_iscdi=true |