Loading…

Vantage Point Counts and Monitoring Roe Deer

Vantage point counts (VPCs) are adopted to estimate the densities of roe deer (Capreolus capreolus) populations for harvest management. Thus, counts should be performed only within blocks without woodlands where it is possible to relate counts to block sizes. Alternatively, if VPCs are simply carrie...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of wildlife management 2018-02, Vol.82 (2), p.354-361
Main Authors: ZACCARONI, MARCO, DELL’AGNELLO, FILIPPO, PONTI, GIULIA, RIGA, FRANCESCO, VESCOVINI, CHIARA, FATTORINI, LORENZO
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3235-c0ed5eb837da45aef23b694b4d9a21ed642f9131a95420c6a9235f8c8577b6af3
cites cdi_FETCH-LOGICAL-c3235-c0ed5eb837da45aef23b694b4d9a21ed642f9131a95420c6a9235f8c8577b6af3
container_end_page 361
container_issue 2
container_start_page 354
container_title The Journal of wildlife management
container_volume 82
creator ZACCARONI, MARCO
DELL’AGNELLO, FILIPPO
PONTI, GIULIA
RIGA, FRANCESCO
VESCOVINI, CHIARA
FATTORINI, LORENZO
description Vantage point counts (VPCs) are adopted to estimate the densities of roe deer (Capreolus capreolus) populations for harvest management. Thus, counts should be performed only within blocks without woodlands where it is possible to relate counts to block sizes. Alternatively, if VPCs are simply carried out on all blocks in a study region, the expectations of total counts could be used as relative abundance indices. In most cases, surveying all blocks is too demanding because of the number of observers required, time, and organization. Therefore, VPCs are performed only on a portion of the blocks, and relative abundance indices are estimated from these counts. If the blocks are selected by means of probabilistic sampling schemes, then statistically sound estimators of total count expectations can be adopted. Therefore, the estimation of the sampling errors, construction of confidence intervals, and assessment of change are possible, together with a post hoc power analysis for evaluating the probability of failing to detect a change in the expectations. Our objective in this study is to consider sampling strategies that allow the performance of all these statistical steps and to check the performance of these strategies on a hunting district located in Tuscany, Italy, in which all the blocks were surveyed in 2013 and 2014. The results provide evidence of the imprecision of the estimators. Even for large sampling fractions of 40–50%, the relative standard errors never decreased below 20%, and the corresponding powers in detecting a change of 30% at a level α = 0:05 were
doi_str_mv 10.1002/jwmg.21385
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1989596492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26608874</jstor_id><sourcerecordid>26608874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3235-c0ed5eb837da45aef23b694b4d9a21ed642f9131a95420c6a9235f8c8577b6af3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMoOKcX70LBm9iZl19NjjJ1Kg5F_HULaZuOli2ZScfYf29n1aOnd3jf9x58CB0DHgHG5KJZL2YjAlTyHTQARbOUSMh20aBbkpQz-NhHBzE2GFMAKQbo_M241sxs8uRr1yZjv3JtTIwrk6l3detD7WbJs7fJlbXhEO1VZh7t0c8coteb65fxbfrwOLkbXz6kBSWUpwW2Jbe5pFlpGDe2IjQXiuWsVIaALQUjlQIKRnFGcCGM6qxKFpJnWS5MRYfotL-7DP5zZWOrG78KrnupQUnFlWCdMkRnPVUEH2OwlV6GemHCRgPW2xp6W0N_1-hg6OF1Pbebf0h9_z6d_DonvdPELsSfQ4TAUmaMfgExLmnn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989596492</pqid></control><display><type>article</type><title>Vantage Point Counts and Monitoring Roe Deer</title><source>Wiley</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>ZACCARONI, MARCO ; DELL’AGNELLO, FILIPPO ; PONTI, GIULIA ; RIGA, FRANCESCO ; VESCOVINI, CHIARA ; FATTORINI, LORENZO</creator><creatorcontrib>ZACCARONI, MARCO ; DELL’AGNELLO, FILIPPO ; PONTI, GIULIA ; RIGA, FRANCESCO ; VESCOVINI, CHIARA ; FATTORINI, LORENZO</creatorcontrib><description>Vantage point counts (VPCs) are adopted to estimate the densities of roe deer (Capreolus capreolus) populations for harvest management. Thus, counts should be performed only within blocks without woodlands where it is possible to relate counts to block sizes. Alternatively, if VPCs are simply carried out on all blocks in a study region, the expectations of total counts could be used as relative abundance indices. In most cases, surveying all blocks is too demanding because of the number of observers required, time, and organization. Therefore, VPCs are performed only on a portion of the blocks, and relative abundance indices are estimated from these counts. If the blocks are selected by means of probabilistic sampling schemes, then statistically sound estimators of total count expectations can be adopted. Therefore, the estimation of the sampling errors, construction of confidence intervals, and assessment of change are possible, together with a post hoc power analysis for evaluating the probability of failing to detect a change in the expectations. Our objective in this study is to consider sampling strategies that allow the performance of all these statistical steps and to check the performance of these strategies on a hunting district located in Tuscany, Italy, in which all the blocks were surveyed in 2013 and 2014. The results provide evidence of the imprecision of the estimators. Even for large sampling fractions of 40–50%, the relative standard errors never decreased below 20%, and the corresponding powers in detecting a change of 30% at a level α = 0:05 were &lt;0.65. Our results highlight the need for efficient and robust alternative strategies.</description><identifier>ISSN: 0022-541X</identifier><identifier>EISSN: 1937-2817</identifier><identifier>DOI: 10.1002/jwmg.21385</identifier><language>eng</language><publisher>Bethesda: Wiley</publisher><subject>Abundance ; Animal populations ; area sampling ; Capreolus capreolus ; Change detection ; Confidence intervals ; Deer ; Estimators ; Horvitz‐Thompson estimation ; Hunting ; Monitoring ; Population (statistical) ; Population Ecology ; Relative abundance ; relative abundance indices ; Sampling ; Sampling error ; Statistical analysis ; Statistical methods ; statistical power ; Surveying ; Wildlife ; Wildlife management ; Woodlands</subject><ispartof>The Journal of wildlife management, 2018-02, Vol.82 (2), p.354-361</ispartof><rights>2017 The Wildlife Society</rights><rights>The Wildlife Society, 2017</rights><rights>The Wildlife Society, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3235-c0ed5eb837da45aef23b694b4d9a21ed642f9131a95420c6a9235f8c8577b6af3</citedby><cites>FETCH-LOGICAL-c3235-c0ed5eb837da45aef23b694b4d9a21ed642f9131a95420c6a9235f8c8577b6af3</cites><orcidid>0000-0002-3588-6476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26608874$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26608874$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids></links><search><creatorcontrib>ZACCARONI, MARCO</creatorcontrib><creatorcontrib>DELL’AGNELLO, FILIPPO</creatorcontrib><creatorcontrib>PONTI, GIULIA</creatorcontrib><creatorcontrib>RIGA, FRANCESCO</creatorcontrib><creatorcontrib>VESCOVINI, CHIARA</creatorcontrib><creatorcontrib>FATTORINI, LORENZO</creatorcontrib><title>Vantage Point Counts and Monitoring Roe Deer</title><title>The Journal of wildlife management</title><description>Vantage point counts (VPCs) are adopted to estimate the densities of roe deer (Capreolus capreolus) populations for harvest management. Thus, counts should be performed only within blocks without woodlands where it is possible to relate counts to block sizes. Alternatively, if VPCs are simply carried out on all blocks in a study region, the expectations of total counts could be used as relative abundance indices. In most cases, surveying all blocks is too demanding because of the number of observers required, time, and organization. Therefore, VPCs are performed only on a portion of the blocks, and relative abundance indices are estimated from these counts. If the blocks are selected by means of probabilistic sampling schemes, then statistically sound estimators of total count expectations can be adopted. Therefore, the estimation of the sampling errors, construction of confidence intervals, and assessment of change are possible, together with a post hoc power analysis for evaluating the probability of failing to detect a change in the expectations. Our objective in this study is to consider sampling strategies that allow the performance of all these statistical steps and to check the performance of these strategies on a hunting district located in Tuscany, Italy, in which all the blocks were surveyed in 2013 and 2014. The results provide evidence of the imprecision of the estimators. Even for large sampling fractions of 40–50%, the relative standard errors never decreased below 20%, and the corresponding powers in detecting a change of 30% at a level α = 0:05 were &lt;0.65. Our results highlight the need for efficient and robust alternative strategies.</description><subject>Abundance</subject><subject>Animal populations</subject><subject>area sampling</subject><subject>Capreolus capreolus</subject><subject>Change detection</subject><subject>Confidence intervals</subject><subject>Deer</subject><subject>Estimators</subject><subject>Horvitz‐Thompson estimation</subject><subject>Hunting</subject><subject>Monitoring</subject><subject>Population (statistical)</subject><subject>Population Ecology</subject><subject>Relative abundance</subject><subject>relative abundance indices</subject><subject>Sampling</subject><subject>Sampling error</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>statistical power</subject><subject>Surveying</subject><subject>Wildlife</subject><subject>Wildlife management</subject><subject>Woodlands</subject><issn>0022-541X</issn><issn>1937-2817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUgIMoOKcX70LBm9iZl19NjjJ1Kg5F_HULaZuOli2ZScfYf29n1aOnd3jf9x58CB0DHgHG5KJZL2YjAlTyHTQARbOUSMh20aBbkpQz-NhHBzE2GFMAKQbo_M241sxs8uRr1yZjv3JtTIwrk6l3detD7WbJs7fJlbXhEO1VZh7t0c8coteb65fxbfrwOLkbXz6kBSWUpwW2Jbe5pFlpGDe2IjQXiuWsVIaALQUjlQIKRnFGcCGM6qxKFpJnWS5MRYfotL-7DP5zZWOrG78KrnupQUnFlWCdMkRnPVUEH2OwlV6GemHCRgPW2xp6W0N_1-hg6OF1Pbebf0h9_z6d_DonvdPELsSfQ4TAUmaMfgExLmnn</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>ZACCARONI, MARCO</creator><creator>DELL’AGNELLO, FILIPPO</creator><creator>PONTI, GIULIA</creator><creator>RIGA, FRANCESCO</creator><creator>VESCOVINI, CHIARA</creator><creator>FATTORINI, LORENZO</creator><general>Wiley</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7U6</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-3588-6476</orcidid></search><sort><creationdate>20180201</creationdate><title>Vantage Point Counts and Monitoring Roe Deer</title><author>ZACCARONI, MARCO ; DELL’AGNELLO, FILIPPO ; PONTI, GIULIA ; RIGA, FRANCESCO ; VESCOVINI, CHIARA ; FATTORINI, LORENZO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3235-c0ed5eb837da45aef23b694b4d9a21ed642f9131a95420c6a9235f8c8577b6af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abundance</topic><topic>Animal populations</topic><topic>area sampling</topic><topic>Capreolus capreolus</topic><topic>Change detection</topic><topic>Confidence intervals</topic><topic>Deer</topic><topic>Estimators</topic><topic>Horvitz‐Thompson estimation</topic><topic>Hunting</topic><topic>Monitoring</topic><topic>Population (statistical)</topic><topic>Population Ecology</topic><topic>Relative abundance</topic><topic>relative abundance indices</topic><topic>Sampling</topic><topic>Sampling error</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>statistical power</topic><topic>Surveying</topic><topic>Wildlife</topic><topic>Wildlife management</topic><topic>Woodlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZACCARONI, MARCO</creatorcontrib><creatorcontrib>DELL’AGNELLO, FILIPPO</creatorcontrib><creatorcontrib>PONTI, GIULIA</creatorcontrib><creatorcontrib>RIGA, FRANCESCO</creatorcontrib><creatorcontrib>VESCOVINI, CHIARA</creatorcontrib><creatorcontrib>FATTORINI, LORENZO</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Sustainability Science Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>The Journal of wildlife management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZACCARONI, MARCO</au><au>DELL’AGNELLO, FILIPPO</au><au>PONTI, GIULIA</au><au>RIGA, FRANCESCO</au><au>VESCOVINI, CHIARA</au><au>FATTORINI, LORENZO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vantage Point Counts and Monitoring Roe Deer</atitle><jtitle>The Journal of wildlife management</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>82</volume><issue>2</issue><spage>354</spage><epage>361</epage><pages>354-361</pages><issn>0022-541X</issn><eissn>1937-2817</eissn><abstract>Vantage point counts (VPCs) are adopted to estimate the densities of roe deer (Capreolus capreolus) populations for harvest management. Thus, counts should be performed only within blocks without woodlands where it is possible to relate counts to block sizes. Alternatively, if VPCs are simply carried out on all blocks in a study region, the expectations of total counts could be used as relative abundance indices. In most cases, surveying all blocks is too demanding because of the number of observers required, time, and organization. Therefore, VPCs are performed only on a portion of the blocks, and relative abundance indices are estimated from these counts. If the blocks are selected by means of probabilistic sampling schemes, then statistically sound estimators of total count expectations can be adopted. Therefore, the estimation of the sampling errors, construction of confidence intervals, and assessment of change are possible, together with a post hoc power analysis for evaluating the probability of failing to detect a change in the expectations. Our objective in this study is to consider sampling strategies that allow the performance of all these statistical steps and to check the performance of these strategies on a hunting district located in Tuscany, Italy, in which all the blocks were surveyed in 2013 and 2014. The results provide evidence of the imprecision of the estimators. Even for large sampling fractions of 40–50%, the relative standard errors never decreased below 20%, and the corresponding powers in detecting a change of 30% at a level α = 0:05 were &lt;0.65. Our results highlight the need for efficient and robust alternative strategies.</abstract><cop>Bethesda</cop><pub>Wiley</pub><doi>10.1002/jwmg.21385</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3588-6476</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-541X
ispartof The Journal of wildlife management, 2018-02, Vol.82 (2), p.354-361
issn 0022-541X
1937-2817
language eng
recordid cdi_proquest_journals_1989596492
source Wiley; JSTOR Archival Journals and Primary Sources Collection
subjects Abundance
Animal populations
area sampling
Capreolus capreolus
Change detection
Confidence intervals
Deer
Estimators
Horvitz‐Thompson estimation
Hunting
Monitoring
Population (statistical)
Population Ecology
Relative abundance
relative abundance indices
Sampling
Sampling error
Statistical analysis
Statistical methods
statistical power
Surveying
Wildlife
Wildlife management
Woodlands
title Vantage Point Counts and Monitoring Roe Deer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vantage%20Point%20Counts%20and%20Monitoring%20Roe%20Deer&rft.jtitle=The%20Journal%20of%20wildlife%20management&rft.au=ZACCARONI,%20MARCO&rft.date=2018-02-01&rft.volume=82&rft.issue=2&rft.spage=354&rft.epage=361&rft.pages=354-361&rft.issn=0022-541X&rft.eissn=1937-2817&rft_id=info:doi/10.1002/jwmg.21385&rft_dat=%3Cjstor_proqu%3E26608874%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3235-c0ed5eb837da45aef23b694b4d9a21ed642f9131a95420c6a9235f8c8577b6af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1989596492&rft_id=info:pmid/&rft_jstor_id=26608874&rfr_iscdi=true