Loading…

Influence of Syzygium cumini leaves extract on morphological, thermal, mechanical, and antimicrobial properties of PVA and PVA/chitosan blend films

ABSTRACT In the present work, poly(vinyl alcohol)/Syzygium cumini leaves extract (PSN) and poly(vinyl alcohol)/chitosan/S. cumini leaves extract blend films were prepared by solution casting technique. The films were characterized by using scanning electron microscopy, atomic force microscopy, X‐ray...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2018-05, Vol.135 (17), p.n/a
Main Authors: Kasai, Deepak, Chougale, Ravindra, Masti, Saraswati, Chalannavar, Raju, Malabadi, Ravindra B., Gani, Ramesh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT In the present work, poly(vinyl alcohol)/Syzygium cumini leaves extract (PSN) and poly(vinyl alcohol)/chitosan/S. cumini leaves extract blend films were prepared by solution casting technique. The films were characterized by using scanning electron microscopy, atomic force microscopy, X‐ray diffraction study, Fourier transform infrared spectroscopy, thermogravimetric analysis, and universal testing machine. The results indicated that the appreciable physical interaction at lower concentrations of S. cumini leaves extract in the PVA and PVA/chitosan films contribute to the smooth uniform morphology, increased the degree of crystallinity, degradation temperature, and improved mechanical properties. Further, films were analyzed with water contact angle analyzer which illustrates that blend films were hydrophilic (PSN‐1) and hydrophobic (PCS‐1) in nature. However, blend films were also subjected to the antimicrobial study, which revealed that inclusion of S. cumini leaves extracts significantly enhanced the antibacterial activity in the PVA and PVA/chitosan film. With all of these results, fabricated blends can find potential applications in packaging material to extend the shelf life of foodstuffs. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46188.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.46188