Loading…

Click functionalization of magnetite nanoparticles: A new magnetically recoverable catalyst for the selective epoxidation of olefins

A new magnetically recoverable heterogeneous molybdenum catalyst was developed by means of a click chemistry approach. First, silica‐coated magnetite nanoparticles were functionalized using a bidentate ligand via thiol–ene click reaction of mercaptopropyl‐modified magnetite nanoparticles with acryli...

Full description

Saved in:
Bibliographic Details
Published in:Applied organometallic chemistry 2018-02, Vol.32 (2), p.n/a
Main Authors: Masteri‐Farahani, Majid, Shahsavarifar, Samaneh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new magnetically recoverable heterogeneous molybdenum catalyst was developed by means of a click chemistry approach. First, silica‐coated magnetite nanoparticles were functionalized using a bidentate ligand via thiol–ene click reaction of mercaptopropyl‐modified magnetite nanoparticles with acrylic acid. Then, a molybdenum complex was covalently supported on the surface of the clicked silica‐coated magnetite nanoparticles. The prepared catalyst was characterized using Fourier transform infrared and inductively coupled plasma optical emission spectroscopies, X‐ray diffraction, vibrating sample magnetometry and transmission electron microscopy. The catalytic performance of the prepared heterogeneous catalyst was investigated in the epoxidation of olefins with tert‐butyl hydroperoxide as oxidant. This catalyst could be reused for five runs without significant loss of activity and selectivity. A new magnetically recoverable heterogeneous molybdenum catalyst was developed by means of a click chemistry approach. The catalytic performance of the prepared heterogeneous catalyst was investigated in the epoxidation of olefins with tert‐butyl hydroperoxide as oxidant. This catalyst could be reused for five runs without significant loss of activity and selectivity.
ISSN:0268-2605
1099-0739
DOI:10.1002/aoc.4064