Loading…
Igusa Zeta Functions and the Non-archimedean SYZ Fibration
We explain the proof, obtained in collaboration with Chenyang Xu, of a 1999 conjecture of Veys about poles of maximal order of Igusa zeta functions. The proof technique is based on the Minimal Model Program in birational geometry, but the proof was heavily inspired by ideas coming from non-archimede...
Saved in:
Published in: | Acta mathematica vietnamica 2018-03, Vol.43 (1), p.31-44 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-5b04fe558e3ce3c8efcf24b5cb3eeba8bca01df3bed670bbe5054b82b4529ec63 |
container_end_page | 44 |
container_issue | 1 |
container_start_page | 31 |
container_title | Acta mathematica vietnamica |
container_volume | 43 |
creator | Nicaise, Johannes |
description | We explain the proof, obtained in collaboration with Chenyang Xu, of a 1999 conjecture of Veys about poles of maximal order of Igusa zeta functions. The proof technique is based on the Minimal Model Program in birational geometry, but the proof was heavily inspired by ideas coming from non-archimedean geometry and mirror symmetry; we will outline these relations at the end of the paper. This text is intended to be a low-tech introduction to these topics; we only assume that the reader has a basic knowledge of algebraic geometry. |
doi_str_mv | 10.1007/s40306-017-0241-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992347267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992347267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-5b04fe558e3ce3c8efcf24b5cb3eeba8bca01df3bed670bbe5054b82b4529ec63</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLeA5-jkazf1JsVqoehBPdhLSLKz7YrdrcnuwX9vynrwIgzMHJ73HXgIueRwzQHKm6RAQsGAlwyE4gxOyERIrpniSp2SCQjN823UOZml1HjgsiygNHpCblfbITm6wd7R5dCGvunaRF1b0X6H9KlrmYth1-yxQtfSl_cNXTY-uiN2Qc5q95lw9run5G15_7p4ZOvnh9Xibs2CKEzPtAdVo9YGZchjsA61UF4HLxG9Mz444FUtPVZFCd6jBq28EV5pMcdQyCm5GnsPsfsaMPX2oxtim19aPp8LqUpRlJniIxVil1LE2h5is3fx23KwR0t2tGSzJXu0ZCFnxJhJmW23GP80_xv6AfaeaY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992347267</pqid></control><display><type>article</type><title>Igusa Zeta Functions and the Non-archimedean SYZ Fibration</title><source>Springer Nature</source><creator>Nicaise, Johannes</creator><creatorcontrib>Nicaise, Johannes</creatorcontrib><description>We explain the proof, obtained in collaboration with Chenyang Xu, of a 1999 conjecture of Veys about poles of maximal order of Igusa zeta functions. The proof technique is based on the Minimal Model Program in birational geometry, but the proof was heavily inspired by ideas coming from non-archimedean geometry and mirror symmetry; we will outline these relations at the end of the paper. This text is intended to be a low-tech introduction to these topics; we only assume that the reader has a basic knowledge of algebraic geometry.</description><identifier>ISSN: 0251-4184</identifier><identifier>EISSN: 2315-4144</identifier><identifier>DOI: 10.1007/s40306-017-0241-0</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Geometry ; Mathematics ; Mathematics and Statistics</subject><ispartof>Acta mathematica vietnamica, 2018-03, Vol.43 (1), p.31-44</ispartof><rights>Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-5b04fe558e3ce3c8efcf24b5cb3eeba8bca01df3bed670bbe5054b82b4529ec63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Nicaise, Johannes</creatorcontrib><title>Igusa Zeta Functions and the Non-archimedean SYZ Fibration</title><title>Acta mathematica vietnamica</title><addtitle>Acta Math Vietnam</addtitle><description>We explain the proof, obtained in collaboration with Chenyang Xu, of a 1999 conjecture of Veys about poles of maximal order of Igusa zeta functions. The proof technique is based on the Minimal Model Program in birational geometry, but the proof was heavily inspired by ideas coming from non-archimedean geometry and mirror symmetry; we will outline these relations at the end of the paper. This text is intended to be a low-tech introduction to these topics; we only assume that the reader has a basic knowledge of algebraic geometry.</description><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0251-4184</issn><issn>2315-4144</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLeA5-jkazf1JsVqoehBPdhLSLKz7YrdrcnuwX9vynrwIgzMHJ73HXgIueRwzQHKm6RAQsGAlwyE4gxOyERIrpniSp2SCQjN823UOZml1HjgsiygNHpCblfbITm6wd7R5dCGvunaRF1b0X6H9KlrmYth1-yxQtfSl_cNXTY-uiN2Qc5q95lw9run5G15_7p4ZOvnh9Xibs2CKEzPtAdVo9YGZchjsA61UF4HLxG9Mz444FUtPVZFCd6jBq28EV5pMcdQyCm5GnsPsfsaMPX2oxtim19aPp8LqUpRlJniIxVil1LE2h5is3fx23KwR0t2tGSzJXu0ZCFnxJhJmW23GP80_xv6AfaeaY8</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Nicaise, Johannes</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>Igusa Zeta Functions and the Non-archimedean SYZ Fibration</title><author>Nicaise, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-5b04fe558e3ce3c8efcf24b5cb3eeba8bca01df3bed670bbe5054b82b4529ec63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicaise, Johannes</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica vietnamica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicaise, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Igusa Zeta Functions and the Non-archimedean SYZ Fibration</atitle><jtitle>Acta mathematica vietnamica</jtitle><stitle>Acta Math Vietnam</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>43</volume><issue>1</issue><spage>31</spage><epage>44</epage><pages>31-44</pages><issn>0251-4184</issn><eissn>2315-4144</eissn><abstract>We explain the proof, obtained in collaboration with Chenyang Xu, of a 1999 conjecture of Veys about poles of maximal order of Igusa zeta functions. The proof technique is based on the Minimal Model Program in birational geometry, but the proof was heavily inspired by ideas coming from non-archimedean geometry and mirror symmetry; we will outline these relations at the end of the paper. This text is intended to be a low-tech introduction to these topics; we only assume that the reader has a basic knowledge of algebraic geometry.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40306-017-0241-0</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0251-4184 |
ispartof | Acta mathematica vietnamica, 2018-03, Vol.43 (1), p.31-44 |
issn | 0251-4184 2315-4144 |
language | eng |
recordid | cdi_proquest_journals_1992347267 |
source | Springer Nature |
subjects | Geometry Mathematics Mathematics and Statistics |
title | Igusa Zeta Functions and the Non-archimedean SYZ Fibration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Igusa%20Zeta%20Functions%20and%20the%20Non-archimedean%20SYZ%20Fibration&rft.jtitle=Acta%20mathematica%20vietnamica&rft.au=Nicaise,%20Johannes&rft.date=2018-03-01&rft.volume=43&rft.issue=1&rft.spage=31&rft.epage=44&rft.pages=31-44&rft.issn=0251-4184&rft.eissn=2315-4144&rft_id=info:doi/10.1007/s40306-017-0241-0&rft_dat=%3Cproquest_cross%3E1992347267%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-5b04fe558e3ce3c8efcf24b5cb3eeba8bca01df3bed670bbe5054b82b4529ec63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1992347267&rft_id=info:pmid/&rfr_iscdi=true |