Loading…

An example where lubrication theory comes short: hydraulic jumps in a flow down an inclined plate

We examine two-dimensional flows of a viscous liquid on an inclined plate. If the upstream depth $h_{-}$ of the liquid is larger than its downstream depth $h_{+}$ , a smooth hydraulic jump (bore) forms and starts propagating down the slope. If the inclination angle of the plate is small, the bore ca...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2015-02, Vol.764, p.277-295
Main Authors: Benilov, E. S., Lapin, V. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c302t-cede1c4b6bb64c4ab8e83a265261b14c1953213ee248ebc15f14d18762c5cd493
cites cdi_FETCH-LOGICAL-c302t-cede1c4b6bb64c4ab8e83a265261b14c1953213ee248ebc15f14d18762c5cd493
container_end_page 295
container_issue
container_start_page 277
container_title Journal of fluid mechanics
container_volume 764
creator Benilov, E. S.
Lapin, V. N.
description We examine two-dimensional flows of a viscous liquid on an inclined plate. If the upstream depth $h_{-}$ of the liquid is larger than its downstream depth $h_{+}$ , a smooth hydraulic jump (bore) forms and starts propagating down the slope. If the inclination angle of the plate is small, the bore can be described by the so-called lubrication theory. In this work we demonstrate that bores with $h_{+}/h_{-}
doi_str_mv 10.1017/jfm.2014.719
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992590016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2014_719</cupid><sourcerecordid>1992590016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-cede1c4b6bb64c4ab8e83a265261b14c1953213ee248ebc15f14d18762c5cd493</originalsourceid><addsrcrecordid>eNptkE1PwzAMhiMEEmNw4wdE4kpHnKZpw22a-JImcYFzlaYubdU2JWk19u_JtB04cLJlPX4tP4TcAlsBg_ShrfoVZyBWKagzsgAhVZRKkZyTBWOcRwCcXZIr71vGIGYqXRC9Hij-6H7skO5qdEi7uXCN0VNjBzrVaN2eGtujp762bnqk9b50eu4aQ9u5Hz1tBqpp1dkdLe0u9EOYmK4ZsKRjpye8JheV7jzenOqSfD4_fWxeo-37y9tmvY1MzPgUGSwRjChkUUhhhC4yzGLNZcIlFCAMqCTmECNykWFhIKlAlJClkpvElELFS3J3zB2d_Z7RT3lrZzeEkzkoxRMVfpaBuj9SxlnvHVb56Jpeu30OLD9IzIPE_CAxDxIDvjrhug9ayi_8k_rfwi8C0HSN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992590016</pqid></control><display><type>article</type><title>An example where lubrication theory comes short: hydraulic jumps in a flow down an inclined plate</title><source>Cambridge Journals Online</source><creator>Benilov, E. S. ; Lapin, V. N.</creator><creatorcontrib>Benilov, E. S. ; Lapin, V. N.</creatorcontrib><description>We examine two-dimensional flows of a viscous liquid on an inclined plate. If the upstream depth $h_{-}$ of the liquid is larger than its downstream depth $h_{+}$ , a smooth hydraulic jump (bore) forms and starts propagating down the slope. If the inclination angle of the plate is small, the bore can be described by the so-called lubrication theory. In this work we demonstrate that bores with $h_{+}/h_{-}&lt;(\sqrt{3}-1)/2$ either are unstable or do not exist as steady solutions of the governing equation (physically, these two possibilities are difficult to distinguish). The instability/evolution occurs near a stagnation point and, generally, causes overturning – sometimes on the scale of the whole bore, sometimes on a shorter, local scale. The overturning occurs because the flow advects disturbances towards the stagnation point and, thus, ‘compresses’ them, increasing the slope of the free surface. Interestingly, this effect is not captured by the lubrication theory, which formally yields a well-behaved stable solution for all values of $h_{+}/h_{-}$ .</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2014.719</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary conditions ; Fluid dynamics ; Free surfaces ; Gravitational waves ; Hydraulic jump ; Hydraulics ; Inclination angle ; Instability ; Lubrication ; Mathematical models ; Solutions ; Stability ; Stagnation point ; Theories ; Two dimensional flow</subject><ispartof>Journal of fluid mechanics, 2015-02, Vol.764, p.277-295</ispartof><rights>2014 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-cede1c4b6bb64c4ab8e83a265261b14c1953213ee248ebc15f14d18762c5cd493</citedby><cites>FETCH-LOGICAL-c302t-cede1c4b6bb64c4ab8e83a265261b14c1953213ee248ebc15f14d18762c5cd493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112014007198/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Benilov, E. S.</creatorcontrib><creatorcontrib>Lapin, V. N.</creatorcontrib><title>An example where lubrication theory comes short: hydraulic jumps in a flow down an inclined plate</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We examine two-dimensional flows of a viscous liquid on an inclined plate. If the upstream depth $h_{-}$ of the liquid is larger than its downstream depth $h_{+}$ , a smooth hydraulic jump (bore) forms and starts propagating down the slope. If the inclination angle of the plate is small, the bore can be described by the so-called lubrication theory. In this work we demonstrate that bores with $h_{+}/h_{-}&lt;(\sqrt{3}-1)/2$ either are unstable or do not exist as steady solutions of the governing equation (physically, these two possibilities are difficult to distinguish). The instability/evolution occurs near a stagnation point and, generally, causes overturning – sometimes on the scale of the whole bore, sometimes on a shorter, local scale. The overturning occurs because the flow advects disturbances towards the stagnation point and, thus, ‘compresses’ them, increasing the slope of the free surface. Interestingly, this effect is not captured by the lubrication theory, which formally yields a well-behaved stable solution for all values of $h_{+}/h_{-}$ .</description><subject>Boundary conditions</subject><subject>Fluid dynamics</subject><subject>Free surfaces</subject><subject>Gravitational waves</subject><subject>Hydraulic jump</subject><subject>Hydraulics</subject><subject>Inclination angle</subject><subject>Instability</subject><subject>Lubrication</subject><subject>Mathematical models</subject><subject>Solutions</subject><subject>Stability</subject><subject>Stagnation point</subject><subject>Theories</subject><subject>Two dimensional flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkE1PwzAMhiMEEmNw4wdE4kpHnKZpw22a-JImcYFzlaYubdU2JWk19u_JtB04cLJlPX4tP4TcAlsBg_ShrfoVZyBWKagzsgAhVZRKkZyTBWOcRwCcXZIr71vGIGYqXRC9Hij-6H7skO5qdEi7uXCN0VNjBzrVaN2eGtujp762bnqk9b50eu4aQ9u5Hz1tBqpp1dkdLe0u9EOYmK4ZsKRjpye8JheV7jzenOqSfD4_fWxeo-37y9tmvY1MzPgUGSwRjChkUUhhhC4yzGLNZcIlFCAMqCTmECNykWFhIKlAlJClkpvElELFS3J3zB2d_Z7RT3lrZzeEkzkoxRMVfpaBuj9SxlnvHVb56Jpeu30OLD9IzIPE_CAxDxIDvjrhug9ayi_8k_rfwi8C0HSN</recordid><startdate>20150210</startdate><enddate>20150210</enddate><creator>Benilov, E. S.</creator><creator>Lapin, V. N.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20150210</creationdate><title>An example where lubrication theory comes short: hydraulic jumps in a flow down an inclined plate</title><author>Benilov, E. S. ; Lapin, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-cede1c4b6bb64c4ab8e83a265261b14c1953213ee248ebc15f14d18762c5cd493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundary conditions</topic><topic>Fluid dynamics</topic><topic>Free surfaces</topic><topic>Gravitational waves</topic><topic>Hydraulic jump</topic><topic>Hydraulics</topic><topic>Inclination angle</topic><topic>Instability</topic><topic>Lubrication</topic><topic>Mathematical models</topic><topic>Solutions</topic><topic>Stability</topic><topic>Stagnation point</topic><topic>Theories</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benilov, E. S.</creatorcontrib><creatorcontrib>Lapin, V. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>ProQuest Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benilov, E. S.</au><au>Lapin, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An example where lubrication theory comes short: hydraulic jumps in a flow down an inclined plate</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2015-02-10</date><risdate>2015</risdate><volume>764</volume><spage>277</spage><epage>295</epage><pages>277-295</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We examine two-dimensional flows of a viscous liquid on an inclined plate. If the upstream depth $h_{-}$ of the liquid is larger than its downstream depth $h_{+}$ , a smooth hydraulic jump (bore) forms and starts propagating down the slope. If the inclination angle of the plate is small, the bore can be described by the so-called lubrication theory. In this work we demonstrate that bores with $h_{+}/h_{-}&lt;(\sqrt{3}-1)/2$ either are unstable or do not exist as steady solutions of the governing equation (physically, these two possibilities are difficult to distinguish). The instability/evolution occurs near a stagnation point and, generally, causes overturning – sometimes on the scale of the whole bore, sometimes on a shorter, local scale. The overturning occurs because the flow advects disturbances towards the stagnation point and, thus, ‘compresses’ them, increasing the slope of the free surface. Interestingly, this effect is not captured by the lubrication theory, which formally yields a well-behaved stable solution for all values of $h_{+}/h_{-}$ .</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2014.719</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2015-02, Vol.764, p.277-295
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1992590016
source Cambridge Journals Online
subjects Boundary conditions
Fluid dynamics
Free surfaces
Gravitational waves
Hydraulic jump
Hydraulics
Inclination angle
Instability
Lubrication
Mathematical models
Solutions
Stability
Stagnation point
Theories
Two dimensional flow
title An example where lubrication theory comes short: hydraulic jumps in a flow down an inclined plate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20example%20where%20lubrication%20theory%20comes%20short:%20hydraulic%20jumps%20in%20a%20flow%20down%20an%20inclined%20plate&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Benilov,%20E.%C2%A0S.&rft.date=2015-02-10&rft.volume=764&rft.spage=277&rft.epage=295&rft.pages=277-295&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2014.719&rft_dat=%3Cproquest_cross%3E1992590016%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-cede1c4b6bb64c4ab8e83a265261b14c1953213ee248ebc15f14d18762c5cd493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1992590016&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2014_719&rfr_iscdi=true