Loading…
A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations
In this paper we are concerned with plane wave discretizations of nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. To this end, we design a plane wave method combined with local spectral elements for the discretization of such nonhomogeneous equations. This method contains two...
Saved in:
Published in: | Advances in computational mathematics 2018-02, Vol.44 (1), p.245-275 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-e9c7f2cc24afbbdb1a91cb3b8b605c20253177a5ecfdd90d0e7495a6d4e88ca83 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-e9c7f2cc24afbbdb1a91cb3b8b605c20253177a5ecfdd90d0e7495a6d4e88ca83 |
container_end_page | 275 |
container_issue | 1 |
container_start_page | 245 |
container_title | Advances in computational mathematics |
container_volume | 44 |
creator | Hu, Qiya Yuan, Long |
description | In this paper we are concerned with plane wave discretizations of nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. To this end, we design a plane wave method combined with local spectral elements for the discretization of such nonhomogeneous equations. This method contains two steps: we first solve a series of nonhomogeneous local problems on auxiliary smooth subdomains by the spectral element method, and then apply the plane wave method to the discretization of the resulting (locally homogeneous) residue problem on the global solution domain. We derive error estimates of the approximate solutions generated by this method. The numerical results show that the resulting approximate solutions possess high accuracy. |
doi_str_mv | 10.1007/s10444-017-9542-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992701747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992701747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e9c7f2cc24afbbdb1a91cb3b8b605c20253177a5ecfdd90d0e7495a6d4e88ca83</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4soOKcfwFvAczTp2qY5jqFOmHjRc0jT17UjTbokdbqrX9yMiXjx9P48fv_34Jck15TcUkLYnackyzJMKMM8z1K8P0kmNGcp5nF_GjOhHDNalOfJhfcbQggvWD5JvuZo0NIA2sl3QD2E1tZI2b7qDNRo14UWaaukRn4AFVwMoKEHEzxqrEPGmtb2dg0G7OjREnTfWh32CLajDJ01SJoaha4H3ErXW9Mp9Cw_dqD1L-Ivk7NGag9XP3OavD3cvy6WePXy-LSYr7Ca0SJg4Io1qVJpJpuqqisqOVXVrCqrguQqJWk-o4zJHFRT15zUBFjGc1nUGZSlkuVsmtwc7w7ObkfwQWzs6Ex8KSjnKYvyMhYpeqSUs947aMTgul66T0GJOLgWR9ci4uLgWuxjJz12fGTNGtyfy_-WvgHidoY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992701747</pqid></control><display><type>article</type><title>A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations</title><source>Springer Link</source><creator>Hu, Qiya ; Yuan, Long</creator><creatorcontrib>Hu, Qiya ; Yuan, Long</creatorcontrib><description>In this paper we are concerned with plane wave discretizations of nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. To this end, we design a plane wave method combined with local spectral elements for the discretization of such nonhomogeneous equations. This method contains two steps: we first solve a series of nonhomogeneous local problems on auxiliary smooth subdomains by the spectral element method, and then apply the plane wave method to the discretization of the resulting (locally homogeneous) residue problem on the global solution domain. We derive error estimates of the approximate solutions generated by this method. The numerical results show that the resulting approximate solutions possess high accuracy.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-017-9542-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computational mathematics ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Discretization ; Helmholtz equations ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Maxwell's equations ; Spectra ; Spectral element method ; Visualization</subject><ispartof>Advances in computational mathematics, 2018-02, Vol.44 (1), p.245-275</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e9c7f2cc24afbbdb1a91cb3b8b605c20253177a5ecfdd90d0e7495a6d4e88ca83</citedby><cites>FETCH-LOGICAL-c316t-e9c7f2cc24afbbdb1a91cb3b8b605c20253177a5ecfdd90d0e7495a6d4e88ca83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hu, Qiya</creatorcontrib><creatorcontrib>Yuan, Long</creatorcontrib><title>A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>In this paper we are concerned with plane wave discretizations of nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. To this end, we design a plane wave method combined with local spectral elements for the discretization of such nonhomogeneous equations. This method contains two steps: we first solve a series of nonhomogeneous local problems on auxiliary smooth subdomains by the spectral element method, and then apply the plane wave method to the discretization of the resulting (locally homogeneous) residue problem on the global solution domain. We derive error estimates of the approximate solutions generated by this method. The numerical results show that the resulting approximate solutions possess high accuracy.</description><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Discretization</subject><subject>Helmholtz equations</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maxwell's equations</subject><subject>Spectra</subject><subject>Spectral element method</subject><subject>Visualization</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAUx4soOKcfwFvAczTp2qY5jqFOmHjRc0jT17UjTbokdbqrX9yMiXjx9P48fv_34Jck15TcUkLYnackyzJMKMM8z1K8P0kmNGcp5nF_GjOhHDNalOfJhfcbQggvWD5JvuZo0NIA2sl3QD2E1tZI2b7qDNRo14UWaaukRn4AFVwMoKEHEzxqrEPGmtb2dg0G7OjREnTfWh32CLajDJ01SJoaha4H3ErXW9Mp9Cw_dqD1L-Ivk7NGag9XP3OavD3cvy6WePXy-LSYr7Ca0SJg4Io1qVJpJpuqqisqOVXVrCqrguQqJWk-o4zJHFRT15zUBFjGc1nUGZSlkuVsmtwc7w7ObkfwQWzs6Ex8KSjnKYvyMhYpeqSUs947aMTgul66T0GJOLgWR9ci4uLgWuxjJz12fGTNGtyfy_-WvgHidoY4</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Hu, Qiya</creator><creator>Yuan, Long</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations</title><author>Hu, Qiya ; Yuan, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e9c7f2cc24afbbdb1a91cb3b8b605c20253177a5ecfdd90d0e7495a6d4e88ca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Discretization</topic><topic>Helmholtz equations</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maxwell's equations</topic><topic>Spectra</topic><topic>Spectral element method</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Qiya</creatorcontrib><creatorcontrib>Yuan, Long</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Qiya</au><au>Yuan, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>44</volume><issue>1</issue><spage>245</spage><epage>275</epage><pages>245-275</pages><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>In this paper we are concerned with plane wave discretizations of nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. To this end, we design a plane wave method combined with local spectral elements for the discretization of such nonhomogeneous equations. This method contains two steps: we first solve a series of nonhomogeneous local problems on auxiliary smooth subdomains by the spectral element method, and then apply the plane wave method to the discretization of the resulting (locally homogeneous) residue problem on the global solution domain. We derive error estimates of the approximate solutions generated by this method. The numerical results show that the resulting approximate solutions possess high accuracy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10444-017-9542-z</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1019-7168 |
ispartof | Advances in computational mathematics, 2018-02, Vol.44 (1), p.245-275 |
issn | 1019-7168 1572-9044 |
language | eng |
recordid | cdi_proquest_journals_1992701747 |
source | Springer Link |
subjects | Computational mathematics Computational Mathematics and Numerical Analysis Computational Science and Engineering Discretization Helmholtz equations Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Maxwell's equations Spectra Spectral element method Visualization |
title | A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20plane%20wave%20method%20combined%20with%20local%20spectral%20elements%20for%20nonhomogeneous%20Helmholtz%20equation%20and%20time-harmonic%20Maxwell%20equations&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Hu,%20Qiya&rft.date=2018-02-01&rft.volume=44&rft.issue=1&rft.spage=245&rft.epage=275&rft.pages=245-275&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-017-9542-z&rft_dat=%3Cproquest_cross%3E1992701747%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-e9c7f2cc24afbbdb1a91cb3b8b605c20253177a5ecfdd90d0e7495a6d4e88ca83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1992701747&rft_id=info:pmid/&rfr_iscdi=true |