Loading…

A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations

In this paper we are concerned with plane wave discretizations of nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. To this end, we design a plane wave method combined with local spectral elements for the discretization of such nonhomogeneous equations. This method contains two...

Full description

Saved in:
Bibliographic Details
Published in:Advances in computational mathematics 2018-02, Vol.44 (1), p.245-275
Main Authors: Hu, Qiya, Yuan, Long
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-e9c7f2cc24afbbdb1a91cb3b8b605c20253177a5ecfdd90d0e7495a6d4e88ca83
cites cdi_FETCH-LOGICAL-c316t-e9c7f2cc24afbbdb1a91cb3b8b605c20253177a5ecfdd90d0e7495a6d4e88ca83
container_end_page 275
container_issue 1
container_start_page 245
container_title Advances in computational mathematics
container_volume 44
creator Hu, Qiya
Yuan, Long
description In this paper we are concerned with plane wave discretizations of nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. To this end, we design a plane wave method combined with local spectral elements for the discretization of such nonhomogeneous equations. This method contains two steps: we first solve a series of nonhomogeneous local problems on auxiliary smooth subdomains by the spectral element method, and then apply the plane wave method to the discretization of the resulting (locally homogeneous) residue problem on the global solution domain. We derive error estimates of the approximate solutions generated by this method. The numerical results show that the resulting approximate solutions possess high accuracy.
doi_str_mv 10.1007/s10444-017-9542-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992701747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992701747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e9c7f2cc24afbbdb1a91cb3b8b605c20253177a5ecfdd90d0e7495a6d4e88ca83</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4soOKcfwFvAczTp2qY5jqFOmHjRc0jT17UjTbokdbqrX9yMiXjx9P48fv_34Jck15TcUkLYnackyzJMKMM8z1K8P0kmNGcp5nF_GjOhHDNalOfJhfcbQggvWD5JvuZo0NIA2sl3QD2E1tZI2b7qDNRo14UWaaukRn4AFVwMoKEHEzxqrEPGmtb2dg0G7OjREnTfWh32CLajDJ01SJoaha4H3ErXW9Mp9Cw_dqD1L-Ivk7NGag9XP3OavD3cvy6WePXy-LSYr7Ca0SJg4Io1qVJpJpuqqisqOVXVrCqrguQqJWk-o4zJHFRT15zUBFjGc1nUGZSlkuVsmtwc7w7ObkfwQWzs6Ex8KSjnKYvyMhYpeqSUs947aMTgul66T0GJOLgWR9ci4uLgWuxjJz12fGTNGtyfy_-WvgHidoY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992701747</pqid></control><display><type>article</type><title>A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations</title><source>Springer Link</source><creator>Hu, Qiya ; Yuan, Long</creator><creatorcontrib>Hu, Qiya ; Yuan, Long</creatorcontrib><description>In this paper we are concerned with plane wave discretizations of nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. To this end, we design a plane wave method combined with local spectral elements for the discretization of such nonhomogeneous equations. This method contains two steps: we first solve a series of nonhomogeneous local problems on auxiliary smooth subdomains by the spectral element method, and then apply the plane wave method to the discretization of the resulting (locally homogeneous) residue problem on the global solution domain. We derive error estimates of the approximate solutions generated by this method. The numerical results show that the resulting approximate solutions possess high accuracy.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-017-9542-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computational mathematics ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Discretization ; Helmholtz equations ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Maxwell's equations ; Spectra ; Spectral element method ; Visualization</subject><ispartof>Advances in computational mathematics, 2018-02, Vol.44 (1), p.245-275</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e9c7f2cc24afbbdb1a91cb3b8b605c20253177a5ecfdd90d0e7495a6d4e88ca83</citedby><cites>FETCH-LOGICAL-c316t-e9c7f2cc24afbbdb1a91cb3b8b605c20253177a5ecfdd90d0e7495a6d4e88ca83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hu, Qiya</creatorcontrib><creatorcontrib>Yuan, Long</creatorcontrib><title>A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>In this paper we are concerned with plane wave discretizations of nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. To this end, we design a plane wave method combined with local spectral elements for the discretization of such nonhomogeneous equations. This method contains two steps: we first solve a series of nonhomogeneous local problems on auxiliary smooth subdomains by the spectral element method, and then apply the plane wave method to the discretization of the resulting (locally homogeneous) residue problem on the global solution domain. We derive error estimates of the approximate solutions generated by this method. The numerical results show that the resulting approximate solutions possess high accuracy.</description><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Discretization</subject><subject>Helmholtz equations</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maxwell's equations</subject><subject>Spectra</subject><subject>Spectral element method</subject><subject>Visualization</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAUx4soOKcfwFvAczTp2qY5jqFOmHjRc0jT17UjTbokdbqrX9yMiXjx9P48fv_34Jck15TcUkLYnackyzJMKMM8z1K8P0kmNGcp5nF_GjOhHDNalOfJhfcbQggvWD5JvuZo0NIA2sl3QD2E1tZI2b7qDNRo14UWaaukRn4AFVwMoKEHEzxqrEPGmtb2dg0G7OjREnTfWh32CLajDJ01SJoaha4H3ErXW9Mp9Cw_dqD1L-Ivk7NGag9XP3OavD3cvy6WePXy-LSYr7Ca0SJg4Io1qVJpJpuqqisqOVXVrCqrguQqJWk-o4zJHFRT15zUBFjGc1nUGZSlkuVsmtwc7w7ObkfwQWzs6Ex8KSjnKYvyMhYpeqSUs947aMTgul66T0GJOLgWR9ci4uLgWuxjJz12fGTNGtyfy_-WvgHidoY4</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Hu, Qiya</creator><creator>Yuan, Long</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations</title><author>Hu, Qiya ; Yuan, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e9c7f2cc24afbbdb1a91cb3b8b605c20253177a5ecfdd90d0e7495a6d4e88ca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Discretization</topic><topic>Helmholtz equations</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maxwell's equations</topic><topic>Spectra</topic><topic>Spectral element method</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Qiya</creatorcontrib><creatorcontrib>Yuan, Long</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Qiya</au><au>Yuan, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>44</volume><issue>1</issue><spage>245</spage><epage>275</epage><pages>245-275</pages><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>In this paper we are concerned with plane wave discretizations of nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. To this end, we design a plane wave method combined with local spectral elements for the discretization of such nonhomogeneous equations. This method contains two steps: we first solve a series of nonhomogeneous local problems on auxiliary smooth subdomains by the spectral element method, and then apply the plane wave method to the discretization of the resulting (locally homogeneous) residue problem on the global solution domain. We derive error estimates of the approximate solutions generated by this method. The numerical results show that the resulting approximate solutions possess high accuracy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10444-017-9542-z</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1019-7168
ispartof Advances in computational mathematics, 2018-02, Vol.44 (1), p.245-275
issn 1019-7168
1572-9044
language eng
recordid cdi_proquest_journals_1992701747
source Springer Link
subjects Computational mathematics
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Discretization
Helmholtz equations
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Maxwell's equations
Spectra
Spectral element method
Visualization
title A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20plane%20wave%20method%20combined%20with%20local%20spectral%20elements%20for%20nonhomogeneous%20Helmholtz%20equation%20and%20time-harmonic%20Maxwell%20equations&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Hu,%20Qiya&rft.date=2018-02-01&rft.volume=44&rft.issue=1&rft.spage=245&rft.epage=275&rft.pages=245-275&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-017-9542-z&rft_dat=%3Cproquest_cross%3E1992701747%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-e9c7f2cc24afbbdb1a91cb3b8b605c20253177a5ecfdd90d0e7495a6d4e88ca83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1992701747&rft_id=info:pmid/&rfr_iscdi=true