Loading…
Pulsar glitch dynamics
We discuss pulsar glitch dynamics from three different viewpoints: statistical description, neutron star equation of state description and finally an electromagnetic field description. For the latter, the pulsar glitch recovery times are the dissipation time constants of sheet surface currents creat...
Saved in:
Published in: | Astrophysics and space science 2018, Vol.363 (1), p.1-7, Article 5 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-81f47be5bf25d7a780b1e72422b765a0e37b1c0d6ad6d4016498011a0d8367083 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-81f47be5bf25d7a780b1e72422b765a0e37b1c0d6ad6d4016498011a0d8367083 |
container_end_page | 7 |
container_issue | 1 |
container_start_page | 1 |
container_title | Astrophysics and space science |
container_volume | 363 |
creator | Morley, P. D. |
description | We discuss pulsar glitch dynamics from three different viewpoints: statistical description, neutron star equation of state description and finally an electromagnetic field description. For the latter, the pulsar glitch recovery times are the dissipation time constants of sheet surface currents created in response to the glitch-induced crustal magnetic field disruption. We mathematically derive these glitch time constants (Ohmic time constant and Hall sheet current time constant) from a perturbation analysis of the electromagnetic induction equation. Different crustal channels will carry the sheet surface current and their different electron densities determine the time constants. |
doi_str_mv | 10.1007/s10509-017-3228-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992798319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992798319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-81f47be5bf25d7a780b1e72422b765a0e37b1c0d6ad6d4016498011a0d8367083</originalsourceid><addsrcrecordid>eNp1j0tLAzEUhYMoOFa3gruC6-i9SSaPpRRfUNCFQnchM8nUKe1MTWYW_femjAs3ri4HzncuHyE3CHcIoO4TQgmGAirKGdOUn5ACS8WoEXJ1SgoAEFQKWJ2Ti5Q2ORppVEGu38dtcnG-3rZD_TX3h87t2jpdkrPGbVO4-r0z8vn0-LF4ocu359fFw5LWHOVANTZCVaGsGlZ65ZSGCoNigrFKydJB4KrCGrx0XnoBKIXRgOjAay4VaD4jt9PuPvbfY0iD3fRj7PJLi8YwZTRHk1s4terYpxRDY_ex3bl4sAj2qG8nfZv17VHf8sywiUm5261D_LP8L_QDurxaKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992798319</pqid></control><display><type>article</type><title>Pulsar glitch dynamics</title><source>Springer Nature</source><creator>Morley, P. D.</creator><creatorcontrib>Morley, P. D.</creatorcontrib><description>We discuss pulsar glitch dynamics from three different viewpoints: statistical description, neutron star equation of state description and finally an electromagnetic field description. For the latter, the pulsar glitch recovery times are the dissipation time constants of sheet surface currents created in response to the glitch-induced crustal magnetic field disruption. We mathematically derive these glitch time constants (Ohmic time constant and Hall sheet current time constant) from a perturbation analysis of the electromagnetic induction equation. Different crustal channels will carry the sheet surface current and their different electron densities determine the time constants.</description><identifier>ISSN: 0004-640X</identifier><identifier>EISSN: 1572-946X</identifier><identifier>DOI: 10.1007/s10509-017-3228-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrobiology ; Astronomy ; Astrophysics ; Astrophysics and Astroparticles ; Constants ; Cosmology ; Electromagnetic fields ; Electromagnetic induction ; Electron density ; Equations of state ; Magnetic fields ; Magnetic induction ; Observations and Techniques ; Original Article ; Perturbation methods ; Physics ; Physics and Astronomy ; Pulsars ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Surface currents ; Time constant</subject><ispartof>Astrophysics and space science, 2018, Vol.363 (1), p.1-7, Article 5</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2017</rights><rights>Astrophysics and Space Science is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-81f47be5bf25d7a780b1e72422b765a0e37b1c0d6ad6d4016498011a0d8367083</citedby><cites>FETCH-LOGICAL-c316t-81f47be5bf25d7a780b1e72422b765a0e37b1c0d6ad6d4016498011a0d8367083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Morley, P. D.</creatorcontrib><title>Pulsar glitch dynamics</title><title>Astrophysics and space science</title><addtitle>Astrophys Space Sci</addtitle><description>We discuss pulsar glitch dynamics from three different viewpoints: statistical description, neutron star equation of state description and finally an electromagnetic field description. For the latter, the pulsar glitch recovery times are the dissipation time constants of sheet surface currents created in response to the glitch-induced crustal magnetic field disruption. We mathematically derive these glitch time constants (Ohmic time constant and Hall sheet current time constant) from a perturbation analysis of the electromagnetic induction equation. Different crustal channels will carry the sheet surface current and their different electron densities determine the time constants.</description><subject>Astrobiology</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Constants</subject><subject>Cosmology</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic induction</subject><subject>Electron density</subject><subject>Equations of state</subject><subject>Magnetic fields</subject><subject>Magnetic induction</subject><subject>Observations and Techniques</subject><subject>Original Article</subject><subject>Perturbation methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pulsars</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Surface currents</subject><subject>Time constant</subject><issn>0004-640X</issn><issn>1572-946X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1j0tLAzEUhYMoOFa3gruC6-i9SSaPpRRfUNCFQnchM8nUKe1MTWYW_femjAs3ri4HzncuHyE3CHcIoO4TQgmGAirKGdOUn5ACS8WoEXJ1SgoAEFQKWJ2Ti5Q2ORppVEGu38dtcnG-3rZD_TX3h87t2jpdkrPGbVO4-r0z8vn0-LF4ocu359fFw5LWHOVANTZCVaGsGlZ65ZSGCoNigrFKydJB4KrCGrx0XnoBKIXRgOjAay4VaD4jt9PuPvbfY0iD3fRj7PJLi8YwZTRHk1s4terYpxRDY_ex3bl4sAj2qG8nfZv17VHf8sywiUm5261D_LP8L_QDurxaKA</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Morley, P. D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2018</creationdate><title>Pulsar glitch dynamics</title><author>Morley, P. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-81f47be5bf25d7a780b1e72422b765a0e37b1c0d6ad6d4016498011a0d8367083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astrobiology</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Constants</topic><topic>Cosmology</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic induction</topic><topic>Electron density</topic><topic>Equations of state</topic><topic>Magnetic fields</topic><topic>Magnetic induction</topic><topic>Observations and Techniques</topic><topic>Original Article</topic><topic>Perturbation methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pulsars</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Surface currents</topic><topic>Time constant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morley, P. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Astrophysics and space science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morley, P. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulsar glitch dynamics</atitle><jtitle>Astrophysics and space science</jtitle><stitle>Astrophys Space Sci</stitle><date>2018</date><risdate>2018</risdate><volume>363</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>5</artnum><issn>0004-640X</issn><eissn>1572-946X</eissn><abstract>We discuss pulsar glitch dynamics from three different viewpoints: statistical description, neutron star equation of state description and finally an electromagnetic field description. For the latter, the pulsar glitch recovery times are the dissipation time constants of sheet surface currents created in response to the glitch-induced crustal magnetic field disruption. We mathematically derive these glitch time constants (Ohmic time constant and Hall sheet current time constant) from a perturbation analysis of the electromagnetic induction equation. Different crustal channels will carry the sheet surface current and their different electron densities determine the time constants.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10509-017-3228-3</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-640X |
ispartof | Astrophysics and space science, 2018, Vol.363 (1), p.1-7, Article 5 |
issn | 0004-640X 1572-946X |
language | eng |
recordid | cdi_proquest_journals_1992798319 |
source | Springer Nature |
subjects | Astrobiology Astronomy Astrophysics Astrophysics and Astroparticles Constants Cosmology Electromagnetic fields Electromagnetic induction Electron density Equations of state Magnetic fields Magnetic induction Observations and Techniques Original Article Perturbation methods Physics Physics and Astronomy Pulsars Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Surface currents Time constant |
title | Pulsar glitch dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulsar%20glitch%20dynamics&rft.jtitle=Astrophysics%20and%20space%20science&rft.au=Morley,%20P.%20D.&rft.date=2018&rft.volume=363&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=5&rft.issn=0004-640X&rft.eissn=1572-946X&rft_id=info:doi/10.1007/s10509-017-3228-3&rft_dat=%3Cproquest_cross%3E1992798319%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-81f47be5bf25d7a780b1e72422b765a0e37b1c0d6ad6d4016498011a0d8367083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1992798319&rft_id=info:pmid/&rfr_iscdi=true |