Loading…

Pulsar glitch dynamics

We discuss pulsar glitch dynamics from three different viewpoints: statistical description, neutron star equation of state description and finally an electromagnetic field description. For the latter, the pulsar glitch recovery times are the dissipation time constants of sheet surface currents creat...

Full description

Saved in:
Bibliographic Details
Published in:Astrophysics and space science 2018, Vol.363 (1), p.1-7, Article 5
Main Author: Morley, P. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-81f47be5bf25d7a780b1e72422b765a0e37b1c0d6ad6d4016498011a0d8367083
cites cdi_FETCH-LOGICAL-c316t-81f47be5bf25d7a780b1e72422b765a0e37b1c0d6ad6d4016498011a0d8367083
container_end_page 7
container_issue 1
container_start_page 1
container_title Astrophysics and space science
container_volume 363
creator Morley, P. D.
description We discuss pulsar glitch dynamics from three different viewpoints: statistical description, neutron star equation of state description and finally an electromagnetic field description. For the latter, the pulsar glitch recovery times are the dissipation time constants of sheet surface currents created in response to the glitch-induced crustal magnetic field disruption. We mathematically derive these glitch time constants (Ohmic time constant and Hall sheet current time constant) from a perturbation analysis of the electromagnetic induction equation. Different crustal channels will carry the sheet surface current and their different electron densities determine the time constants.
doi_str_mv 10.1007/s10509-017-3228-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992798319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992798319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-81f47be5bf25d7a780b1e72422b765a0e37b1c0d6ad6d4016498011a0d8367083</originalsourceid><addsrcrecordid>eNp1j0tLAzEUhYMoOFa3gruC6-i9SSaPpRRfUNCFQnchM8nUKe1MTWYW_femjAs3ri4HzncuHyE3CHcIoO4TQgmGAirKGdOUn5ACS8WoEXJ1SgoAEFQKWJ2Ti5Q2ORppVEGu38dtcnG-3rZD_TX3h87t2jpdkrPGbVO4-r0z8vn0-LF4ocu359fFw5LWHOVANTZCVaGsGlZ65ZSGCoNigrFKydJB4KrCGrx0XnoBKIXRgOjAay4VaD4jt9PuPvbfY0iD3fRj7PJLi8YwZTRHk1s4terYpxRDY_ex3bl4sAj2qG8nfZv17VHf8sywiUm5261D_LP8L_QDurxaKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992798319</pqid></control><display><type>article</type><title>Pulsar glitch dynamics</title><source>Springer Nature</source><creator>Morley, P. D.</creator><creatorcontrib>Morley, P. D.</creatorcontrib><description>We discuss pulsar glitch dynamics from three different viewpoints: statistical description, neutron star equation of state description and finally an electromagnetic field description. For the latter, the pulsar glitch recovery times are the dissipation time constants of sheet surface currents created in response to the glitch-induced crustal magnetic field disruption. We mathematically derive these glitch time constants (Ohmic time constant and Hall sheet current time constant) from a perturbation analysis of the electromagnetic induction equation. Different crustal channels will carry the sheet surface current and their different electron densities determine the time constants.</description><identifier>ISSN: 0004-640X</identifier><identifier>EISSN: 1572-946X</identifier><identifier>DOI: 10.1007/s10509-017-3228-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrobiology ; Astronomy ; Astrophysics ; Astrophysics and Astroparticles ; Constants ; Cosmology ; Electromagnetic fields ; Electromagnetic induction ; Electron density ; Equations of state ; Magnetic fields ; Magnetic induction ; Observations and Techniques ; Original Article ; Perturbation methods ; Physics ; Physics and Astronomy ; Pulsars ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Surface currents ; Time constant</subject><ispartof>Astrophysics and space science, 2018, Vol.363 (1), p.1-7, Article 5</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2017</rights><rights>Astrophysics and Space Science is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-81f47be5bf25d7a780b1e72422b765a0e37b1c0d6ad6d4016498011a0d8367083</citedby><cites>FETCH-LOGICAL-c316t-81f47be5bf25d7a780b1e72422b765a0e37b1c0d6ad6d4016498011a0d8367083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Morley, P. D.</creatorcontrib><title>Pulsar glitch dynamics</title><title>Astrophysics and space science</title><addtitle>Astrophys Space Sci</addtitle><description>We discuss pulsar glitch dynamics from three different viewpoints: statistical description, neutron star equation of state description and finally an electromagnetic field description. For the latter, the pulsar glitch recovery times are the dissipation time constants of sheet surface currents created in response to the glitch-induced crustal magnetic field disruption. We mathematically derive these glitch time constants (Ohmic time constant and Hall sheet current time constant) from a perturbation analysis of the electromagnetic induction equation. Different crustal channels will carry the sheet surface current and their different electron densities determine the time constants.</description><subject>Astrobiology</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Constants</subject><subject>Cosmology</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic induction</subject><subject>Electron density</subject><subject>Equations of state</subject><subject>Magnetic fields</subject><subject>Magnetic induction</subject><subject>Observations and Techniques</subject><subject>Original Article</subject><subject>Perturbation methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pulsars</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Surface currents</subject><subject>Time constant</subject><issn>0004-640X</issn><issn>1572-946X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1j0tLAzEUhYMoOFa3gruC6-i9SSaPpRRfUNCFQnchM8nUKe1MTWYW_femjAs3ri4HzncuHyE3CHcIoO4TQgmGAirKGdOUn5ACS8WoEXJ1SgoAEFQKWJ2Ti5Q2ORppVEGu38dtcnG-3rZD_TX3h87t2jpdkrPGbVO4-r0z8vn0-LF4ocu359fFw5LWHOVANTZCVaGsGlZ65ZSGCoNigrFKydJB4KrCGrx0XnoBKIXRgOjAay4VaD4jt9PuPvbfY0iD3fRj7PJLi8YwZTRHk1s4terYpxRDY_ex3bl4sAj2qG8nfZv17VHf8sywiUm5261D_LP8L_QDurxaKA</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Morley, P. D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2018</creationdate><title>Pulsar glitch dynamics</title><author>Morley, P. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-81f47be5bf25d7a780b1e72422b765a0e37b1c0d6ad6d4016498011a0d8367083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astrobiology</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Constants</topic><topic>Cosmology</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic induction</topic><topic>Electron density</topic><topic>Equations of state</topic><topic>Magnetic fields</topic><topic>Magnetic induction</topic><topic>Observations and Techniques</topic><topic>Original Article</topic><topic>Perturbation methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pulsars</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Surface currents</topic><topic>Time constant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morley, P. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Astrophysics and space science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morley, P. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulsar glitch dynamics</atitle><jtitle>Astrophysics and space science</jtitle><stitle>Astrophys Space Sci</stitle><date>2018</date><risdate>2018</risdate><volume>363</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>5</artnum><issn>0004-640X</issn><eissn>1572-946X</eissn><abstract>We discuss pulsar glitch dynamics from three different viewpoints: statistical description, neutron star equation of state description and finally an electromagnetic field description. For the latter, the pulsar glitch recovery times are the dissipation time constants of sheet surface currents created in response to the glitch-induced crustal magnetic field disruption. We mathematically derive these glitch time constants (Ohmic time constant and Hall sheet current time constant) from a perturbation analysis of the electromagnetic induction equation. Different crustal channels will carry the sheet surface current and their different electron densities determine the time constants.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10509-017-3228-3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0004-640X
ispartof Astrophysics and space science, 2018, Vol.363 (1), p.1-7, Article 5
issn 0004-640X
1572-946X
language eng
recordid cdi_proquest_journals_1992798319
source Springer Nature
subjects Astrobiology
Astronomy
Astrophysics
Astrophysics and Astroparticles
Constants
Cosmology
Electromagnetic fields
Electromagnetic induction
Electron density
Equations of state
Magnetic fields
Magnetic induction
Observations and Techniques
Original Article
Perturbation methods
Physics
Physics and Astronomy
Pulsars
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Surface currents
Time constant
title Pulsar glitch dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulsar%20glitch%20dynamics&rft.jtitle=Astrophysics%20and%20space%20science&rft.au=Morley,%20P.%20D.&rft.date=2018&rft.volume=363&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=5&rft.issn=0004-640X&rft.eissn=1572-946X&rft_id=info:doi/10.1007/s10509-017-3228-3&rft_dat=%3Cproquest_cross%3E1992798319%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-81f47be5bf25d7a780b1e72422b765a0e37b1c0d6ad6d4016498011a0d8367083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1992798319&rft_id=info:pmid/&rfr_iscdi=true