Loading…
A grasp-knapsack hybrid for a nurse-scheduling problem
This paper is concerned with the application of a GRASP approach to a nurse-scheduling problem in which the objective is to optimise a set of preferences subject to a set of binding constraints. The balance between feasibility and optimality is a key issue. This is addressed by using a knapsack mode...
Saved in:
Published in: | Journal of heuristics 2009-08, Vol.15 (4), p.351-379 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c346t-3469103b406a97a915dcb5aeed9a365cdf1bce6ea16616cd6cf4147b35aa96613 |
---|---|
cites | cdi_FETCH-LOGICAL-c346t-3469103b406a97a915dcb5aeed9a365cdf1bce6ea16616cd6cf4147b35aa96613 |
container_end_page | 379 |
container_issue | 4 |
container_start_page | 351 |
container_title | Journal of heuristics |
container_volume | 15 |
creator | Goodman, Melissa D. Dowsland, Kathryn A. Thompson, Jonathan M. |
description | This paper is concerned with the application of a GRASP approach to a nurse-scheduling problem in which the objective is to optimise a set of preferences subject to a set of binding constraints. The balance between feasibility and optimality is a key issue. This is addressed by using a knapsack model to ensure that the solutions produced by the construction heuristic are easy to repair. Several construction heuristics and neighbourhoods are compared empirically. The best combination is further enhanced by a diversification strategy and a dynamic evaluation criterion. Tests show that it outperforms previously published approaches and finds optimal solutions quickly and consistently. |
doi_str_mv | 10.1007/s10732-007-9066-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199297723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753304851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-3469103b406a97a915dcb5aeed9a365cdf1bce6ea16616cd6cf4147b35aa96613</originalsourceid><addsrcrecordid>eNp1ULtOwzAUtRBIlMIHsEXsBl87seuxqnhJlVhgtq4dJ02bJsFuhv49jsLAwnLv0dF5SIeQe2CPwJh6isCU4DRBqpmUVF2QBRSKUy20ukxYrIACF3BNbmLcM8b0qhALItdZHTAO9NDhENEdst3ZhqbMqj5kmHVjiJ5Gt_Pl2DZdnQ2ht60_3pKrCtvo737_kny9PH9u3uj24_V9s95SJ3J5ouloYMLmTKJWqKEonS3Q-1KjkIUrK7DOS48gJUhXSlflkCsrCkSdKLEkD3Nu6v0efTyZfT-GLlUa0JprpbhIIphFLvQxBl-ZITRHDGcDzEzrmHkdM8FpHaOSh8-emLRd7cOf4H9NP2e_ZrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199297723</pqid></control><display><type>article</type><title>A grasp-knapsack hybrid for a nurse-scheduling problem</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Goodman, Melissa D. ; Dowsland, Kathryn A. ; Thompson, Jonathan M.</creator><creatorcontrib>Goodman, Melissa D. ; Dowsland, Kathryn A. ; Thompson, Jonathan M.</creatorcontrib><description>This paper is concerned with the application of a GRASP approach to a nurse-scheduling problem in which the objective is to optimise a set of preferences subject to a set of binding constraints. The balance between feasibility and optimality is a key issue. This is addressed by using a knapsack model to ensure that the solutions produced by the construction heuristic are easy to repair. Several construction heuristics and neighbourhoods are compared empirically. The best combination is further enhanced by a diversification strategy and a dynamic evaluation criterion. Tests show that it outperforms previously published approaches and finds optimal solutions quickly and consistently.</description><identifier>ISSN: 1381-1231</identifier><identifier>EISSN: 1572-9397</identifier><identifier>DOI: 10.1007/s10732-007-9066-7</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Artificial Intelligence ; Calculus of Variations and Optimal Control; Optimization ; Feasibility ; Genetic algorithms ; Heuristic ; Management Science ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Neighborhoods ; Nurses ; Operations Research ; Operations Research/Decision Theory ; Scheduling ; Shift work ; Studies</subject><ispartof>Journal of heuristics, 2009-08, Vol.15 (4), p.351-379</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-3469103b406a97a915dcb5aeed9a365cdf1bce6ea16616cd6cf4147b35aa96613</citedby><cites>FETCH-LOGICAL-c346t-3469103b406a97a915dcb5aeed9a365cdf1bce6ea16616cd6cf4147b35aa96613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/199297723/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/199297723?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Goodman, Melissa D.</creatorcontrib><creatorcontrib>Dowsland, Kathryn A.</creatorcontrib><creatorcontrib>Thompson, Jonathan M.</creatorcontrib><title>A grasp-knapsack hybrid for a nurse-scheduling problem</title><title>Journal of heuristics</title><addtitle>J Heuristics</addtitle><description>This paper is concerned with the application of a GRASP approach to a nurse-scheduling problem in which the objective is to optimise a set of preferences subject to a set of binding constraints. The balance between feasibility and optimality is a key issue. This is addressed by using a knapsack model to ensure that the solutions produced by the construction heuristic are easy to repair. Several construction heuristics and neighbourhoods are compared empirically. The best combination is further enhanced by a diversification strategy and a dynamic evaluation criterion. Tests show that it outperforms previously published approaches and finds optimal solutions quickly and consistently.</description><subject>Artificial Intelligence</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Feasibility</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Management Science</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neighborhoods</subject><subject>Nurses</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Scheduling</subject><subject>Shift work</subject><subject>Studies</subject><issn>1381-1231</issn><issn>1572-9397</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1ULtOwzAUtRBIlMIHsEXsBl87seuxqnhJlVhgtq4dJ02bJsFuhv49jsLAwnLv0dF5SIeQe2CPwJh6isCU4DRBqpmUVF2QBRSKUy20ukxYrIACF3BNbmLcM8b0qhALItdZHTAO9NDhENEdst3ZhqbMqj5kmHVjiJ5Gt_Pl2DZdnQ2ht60_3pKrCtvo737_kny9PH9u3uj24_V9s95SJ3J5ouloYMLmTKJWqKEonS3Q-1KjkIUrK7DOS48gJUhXSlflkCsrCkSdKLEkD3Nu6v0efTyZfT-GLlUa0JprpbhIIphFLvQxBl-ZITRHDGcDzEzrmHkdM8FpHaOSh8-emLRd7cOf4H9NP2e_ZrA</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Goodman, Melissa D.</creator><creator>Dowsland, Kathryn A.</creator><creator>Thompson, Jonathan M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20090801</creationdate><title>A grasp-knapsack hybrid for a nurse-scheduling problem</title><author>Goodman, Melissa D. ; Dowsland, Kathryn A. ; Thompson, Jonathan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-3469103b406a97a915dcb5aeed9a365cdf1bce6ea16616cd6cf4147b35aa96613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial Intelligence</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Feasibility</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Management Science</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neighborhoods</topic><topic>Nurses</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Scheduling</topic><topic>Shift work</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goodman, Melissa D.</creatorcontrib><creatorcontrib>Dowsland, Kathryn A.</creatorcontrib><creatorcontrib>Thompson, Jonathan M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of heuristics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goodman, Melissa D.</au><au>Dowsland, Kathryn A.</au><au>Thompson, Jonathan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A grasp-knapsack hybrid for a nurse-scheduling problem</atitle><jtitle>Journal of heuristics</jtitle><stitle>J Heuristics</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>15</volume><issue>4</issue><spage>351</spage><epage>379</epage><pages>351-379</pages><issn>1381-1231</issn><eissn>1572-9397</eissn><abstract>This paper is concerned with the application of a GRASP approach to a nurse-scheduling problem in which the objective is to optimise a set of preferences subject to a set of binding constraints. The balance between feasibility and optimality is a key issue. This is addressed by using a knapsack model to ensure that the solutions produced by the construction heuristic are easy to repair. Several construction heuristics and neighbourhoods are compared empirically. The best combination is further enhanced by a diversification strategy and a dynamic evaluation criterion. Tests show that it outperforms previously published approaches and finds optimal solutions quickly and consistently.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10732-007-9066-7</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1381-1231 |
ispartof | Journal of heuristics, 2009-08, Vol.15 (4), p.351-379 |
issn | 1381-1231 1572-9397 |
language | eng |
recordid | cdi_proquest_journals_199297723 |
source | ABI/INFORM global; Springer Nature |
subjects | Artificial Intelligence Calculus of Variations and Optimal Control Optimization Feasibility Genetic algorithms Heuristic Management Science Mathematical programming Mathematics Mathematics and Statistics Neighborhoods Nurses Operations Research Operations Research/Decision Theory Scheduling Shift work Studies |
title | A grasp-knapsack hybrid for a nurse-scheduling problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20grasp-knapsack%20hybrid%20for%20a%20nurse-scheduling%20problem&rft.jtitle=Journal%20of%20heuristics&rft.au=Goodman,%20Melissa%20D.&rft.date=2009-08-01&rft.volume=15&rft.issue=4&rft.spage=351&rft.epage=379&rft.pages=351-379&rft.issn=1381-1231&rft.eissn=1572-9397&rft_id=info:doi/10.1007/s10732-007-9066-7&rft_dat=%3Cproquest_cross%3E1753304851%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-3469103b406a97a915dcb5aeed9a365cdf1bce6ea16616cd6cf4147b35aa96613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=199297723&rft_id=info:pmid/&rfr_iscdi=true |