Loading…
Range Expansion of a Habitat-Modifying Species Leads to Loss of Taxonomic Diversity: A New and Impoverished Reef State
Global climate change is predicted to have major negative impacts on biodiversity, particularly if important habitat-modifying species undergo range shifts. The sea urchin Centrostephanus rodgersii (Diadematidae) has recently undergone poleward range expansion to relatively cool, macroalgal dominate...
Saved in:
Published in: | Oecologia 2008-07, Vol.156 (4), p.883-894 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Global climate change is predicted to have major negative impacts on biodiversity, particularly if important habitat-modifying species undergo range shifts. The sea urchin Centrostephanus rodgersii (Diadematidae) has recently undergone poleward range expansion to relatively cool, macroalgal dominated rocky reefs of eastern Tasmania (southeast Australia). As in its historic environment, C. rodgersii in the extended range is now found in association with a simplified ' barrens' habitat grazed free of macroalgae. The new and important role of this habitatmodifier on reef structure and associated biodiversity was clearly demonstrated by completely removing C. rodgersii from incipient barrens patches at an eastern Tasmanian site and monitoring the macroalgal response relative to unmanipulated barrens patches. In barrens patches from which C. rodgersii was removed, there was a rapid proliferation of canopy-form ing macroalgae (Ecklonia radiata and Phyllospora comosã), and within 24 months the algal community structure had converged with that of adjacent macroalgal beds where C. rodgersii grazing was absent. A notable scarcity of limpets on C. rodgersii barrens in eastern Tasmania (relative to the historic range) likely promotes rapid macroalgal recovery upon removal of the sea urchin. In the recovered macroalgal habitat, faunal composition redeveloped similar to that from adjacent intact macroalgal beds in terms of total numbers of taxa, total individuals and Shannon diversity. In contrast, the faunal community of the barrens habitat is overwhelmingly impoverished. Of 296 individual floral/faunal taxa recorded, only 72 were present within incipient barrens, 253 were present in the recovered patches, and 221 were present within intact macroalgal beds. Grazing activity of C. rodgersii results in an estimated minimum net loss of approximately 150 taxa typically associated with Tasmanian macroalgal beds in this region. Such a disproportionate effect by a single range-expanding species demonstrates that climate change may lead to unexpectedly large impacts on marine biodiversity as key habitat-modifying species undergo range modification. |
---|---|
ISSN: | 0029-8549 1432-1939 |
DOI: | 10.1007/s00442-008-1043-9 |