Loading…
Implantable Energy Harvesting Stents for Transcutaneous Wireless Monitoring of Peripheral Artery Disease
More than five million adults in U.S. are affected by the peripheral artery disease. Current wireless stent monitors are unsuitable to use in the thigh. In this paper, wireless powering and communication with implanted stents were investigated. Specifically, we investigated the effects of thigh tiss...
Saved in:
Published in: | IEEE sensors journal 2018-03, Vol.18 (5), p.2077-2090 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-59fca83552374a88e270e10b37e562f0a54168ac904fae2e6bdb3d87e9daf2c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-59fca83552374a88e270e10b37e562f0a54168ac904fae2e6bdb3d87e9daf2c33 |
container_end_page | 2090 |
container_issue | 5 |
container_start_page | 2077 |
container_title | IEEE sensors journal |
container_volume | 18 |
creator | Rothfuss, Michael A. Franconi, Nicholas G. Bocan, Kara N. Unadkat, Jignesh V. Gimbel, Michael L. Mickle, Marlin H. Sejdic, Ervin |
description | More than five million adults in U.S. are affected by the peripheral artery disease. Current wireless stent monitors are unsuitable to use in the thigh. In this paper, wireless powering and communication with implanted stents were investigated. Specifically, we investigated the effects of thigh tissue morphology and tissue thickness variations on wireless power gain and electromagnetic safety when using skin-contact touch probe antennas. Thigh simulation models were derived from anthropometric data for the diseased population. Power gain and specific absorption rate were determined for each variation. To corroborate human model simulation results, a power-to-frequency converter was designed, benchmarked, and implanted within ex vivo porcine tissue. The experiments showed the most realistic simulations reported so far that have the best agreement with measured results. This paper indicates that touch probe powered stent systems can safely deliver significant power to an implant. This research enables frequent at-home monitoring to replace costly in-hospital quarterly check-ups. |
doi_str_mv | 10.1109/JSEN.2017.2787498 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1993194160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8240982</ieee_id><sourcerecordid>1993194160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-59fca83552374a88e270e10b37e562f0a54168ac904fae2e6bdb3d87e9daf2c33</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9AcbLJp6L-9Fld48EUTD4kYDRW7MtUygpW5xtTfj3toF4mjk87zuZh5BbzgacM_vwspi8DQTjeiC00bE1Z6THlTIR17E573bJoljq70tyFcKWMW610j2yme32pfO1S0ugEw-4PtCpw18IdeHXdFGDrwPNK6RLdD5kTe08VE2gXwVCCSHQ18oXdYUdXeX0A7DYbwBdSUdYAx7oYxHABbgmF7krA9ycZp98Pk2W42k0f3-ejUfzKBNW1pGyeeaMVEpIHTtjQGgGnKVSgxqKnDkV86FxmWVx7kDAMF2lcmU02JXLRSZln9wfe_dY_TTtG8m2atC3JxNureS2zbOW4kcqwyoEhDzZY7FzeEg4SzqhSSc06YQmJ6Ft5u6YKQDgnzciZtYI-QedDnOt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993194160</pqid></control><display><type>article</type><title>Implantable Energy Harvesting Stents for Transcutaneous Wireless Monitoring of Peripheral Artery Disease</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rothfuss, Michael A. ; Franconi, Nicholas G. ; Bocan, Kara N. ; Unadkat, Jignesh V. ; Gimbel, Michael L. ; Mickle, Marlin H. ; Sejdic, Ervin</creator><creatorcontrib>Rothfuss, Michael A. ; Franconi, Nicholas G. ; Bocan, Kara N. ; Unadkat, Jignesh V. ; Gimbel, Michael L. ; Mickle, Marlin H. ; Sejdic, Ervin</creatorcontrib><description>More than five million adults in U.S. are affected by the peripheral artery disease. Current wireless stent monitors are unsuitable to use in the thigh. In this paper, wireless powering and communication with implanted stents were investigated. Specifically, we investigated the effects of thigh tissue morphology and tissue thickness variations on wireless power gain and electromagnetic safety when using skin-contact touch probe antennas. Thigh simulation models were derived from anthropometric data for the diseased population. Power gain and specific absorption rate were determined for each variation. To corroborate human model simulation results, a power-to-frequency converter was designed, benchmarked, and implanted within ex vivo porcine tissue. The experiments showed the most realistic simulations reported so far that have the best agreement with measured results. This paper indicates that touch probe powered stent systems can safely deliver significant power to an implant. This research enables frequent at-home monitoring to replace costly in-hospital quarterly check-ups.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2017.2787498</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adults ; Antennas ; Anthropometry ; Biomedical monitoring ; Computer simulation ; Converters ; Diseases ; Energy harvesting ; Frequency converters ; implantable biomedical devices ; implantable biomedical telemetry ; Implants ; Monitoring ; peripheral arterial disease ; Power gain ; Probes ; Simulation ; Skin ; stent ; Stents ; Surgical implants ; Thigh ; Touch ; touch probe ; Wireless communication ; Wireless communications ; wireless power ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2018-03, Vol.18 (5), p.2077-2090</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-59fca83552374a88e270e10b37e562f0a54168ac904fae2e6bdb3d87e9daf2c33</citedby><cites>FETCH-LOGICAL-c293t-59fca83552374a88e270e10b37e562f0a54168ac904fae2e6bdb3d87e9daf2c33</cites><orcidid>0000-0002-6307-4352 ; 0000-0002-5780-5016 ; 0000-0003-4987-8298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8240982$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rothfuss, Michael A.</creatorcontrib><creatorcontrib>Franconi, Nicholas G.</creatorcontrib><creatorcontrib>Bocan, Kara N.</creatorcontrib><creatorcontrib>Unadkat, Jignesh V.</creatorcontrib><creatorcontrib>Gimbel, Michael L.</creatorcontrib><creatorcontrib>Mickle, Marlin H.</creatorcontrib><creatorcontrib>Sejdic, Ervin</creatorcontrib><title>Implantable Energy Harvesting Stents for Transcutaneous Wireless Monitoring of Peripheral Artery Disease</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>More than five million adults in U.S. are affected by the peripheral artery disease. Current wireless stent monitors are unsuitable to use in the thigh. In this paper, wireless powering and communication with implanted stents were investigated. Specifically, we investigated the effects of thigh tissue morphology and tissue thickness variations on wireless power gain and electromagnetic safety when using skin-contact touch probe antennas. Thigh simulation models were derived from anthropometric data for the diseased population. Power gain and specific absorption rate were determined for each variation. To corroborate human model simulation results, a power-to-frequency converter was designed, benchmarked, and implanted within ex vivo porcine tissue. The experiments showed the most realistic simulations reported so far that have the best agreement with measured results. This paper indicates that touch probe powered stent systems can safely deliver significant power to an implant. This research enables frequent at-home monitoring to replace costly in-hospital quarterly check-ups.</description><subject>Adults</subject><subject>Antennas</subject><subject>Anthropometry</subject><subject>Biomedical monitoring</subject><subject>Computer simulation</subject><subject>Converters</subject><subject>Diseases</subject><subject>Energy harvesting</subject><subject>Frequency converters</subject><subject>implantable biomedical devices</subject><subject>implantable biomedical telemetry</subject><subject>Implants</subject><subject>Monitoring</subject><subject>peripheral arterial disease</subject><subject>Power gain</subject><subject>Probes</subject><subject>Simulation</subject><subject>Skin</subject><subject>stent</subject><subject>Stents</subject><subject>Surgical implants</subject><subject>Thigh</subject><subject>Touch</subject><subject>touch probe</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>wireless power</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwkAQhjdGExH9AcbLJp6L-9Fld48EUTD4kYDRW7MtUygpW5xtTfj3toF4mjk87zuZh5BbzgacM_vwspi8DQTjeiC00bE1Z6THlTIR17E573bJoljq70tyFcKWMW610j2yme32pfO1S0ugEw-4PtCpw18IdeHXdFGDrwPNK6RLdD5kTe08VE2gXwVCCSHQ18oXdYUdXeX0A7DYbwBdSUdYAx7oYxHABbgmF7krA9ycZp98Pk2W42k0f3-ejUfzKBNW1pGyeeaMVEpIHTtjQGgGnKVSgxqKnDkV86FxmWVx7kDAMF2lcmU02JXLRSZln9wfe_dY_TTtG8m2atC3JxNureS2zbOW4kcqwyoEhDzZY7FzeEg4SzqhSSc06YQmJ6Ft5u6YKQDgnzciZtYI-QedDnOt</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Rothfuss, Michael A.</creator><creator>Franconi, Nicholas G.</creator><creator>Bocan, Kara N.</creator><creator>Unadkat, Jignesh V.</creator><creator>Gimbel, Michael L.</creator><creator>Mickle, Marlin H.</creator><creator>Sejdic, Ervin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6307-4352</orcidid><orcidid>https://orcid.org/0000-0002-5780-5016</orcidid><orcidid>https://orcid.org/0000-0003-4987-8298</orcidid></search><sort><creationdate>20180301</creationdate><title>Implantable Energy Harvesting Stents for Transcutaneous Wireless Monitoring of Peripheral Artery Disease</title><author>Rothfuss, Michael A. ; Franconi, Nicholas G. ; Bocan, Kara N. ; Unadkat, Jignesh V. ; Gimbel, Michael L. ; Mickle, Marlin H. ; Sejdic, Ervin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-59fca83552374a88e270e10b37e562f0a54168ac904fae2e6bdb3d87e9daf2c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adults</topic><topic>Antennas</topic><topic>Anthropometry</topic><topic>Biomedical monitoring</topic><topic>Computer simulation</topic><topic>Converters</topic><topic>Diseases</topic><topic>Energy harvesting</topic><topic>Frequency converters</topic><topic>implantable biomedical devices</topic><topic>implantable biomedical telemetry</topic><topic>Implants</topic><topic>Monitoring</topic><topic>peripheral arterial disease</topic><topic>Power gain</topic><topic>Probes</topic><topic>Simulation</topic><topic>Skin</topic><topic>stent</topic><topic>Stents</topic><topic>Surgical implants</topic><topic>Thigh</topic><topic>Touch</topic><topic>touch probe</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>wireless power</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rothfuss, Michael A.</creatorcontrib><creatorcontrib>Franconi, Nicholas G.</creatorcontrib><creatorcontrib>Bocan, Kara N.</creatorcontrib><creatorcontrib>Unadkat, Jignesh V.</creatorcontrib><creatorcontrib>Gimbel, Michael L.</creatorcontrib><creatorcontrib>Mickle, Marlin H.</creatorcontrib><creatorcontrib>Sejdic, Ervin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rothfuss, Michael A.</au><au>Franconi, Nicholas G.</au><au>Bocan, Kara N.</au><au>Unadkat, Jignesh V.</au><au>Gimbel, Michael L.</au><au>Mickle, Marlin H.</au><au>Sejdic, Ervin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implantable Energy Harvesting Stents for Transcutaneous Wireless Monitoring of Peripheral Artery Disease</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>18</volume><issue>5</issue><spage>2077</spage><epage>2090</epage><pages>2077-2090</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>More than five million adults in U.S. are affected by the peripheral artery disease. Current wireless stent monitors are unsuitable to use in the thigh. In this paper, wireless powering and communication with implanted stents were investigated. Specifically, we investigated the effects of thigh tissue morphology and tissue thickness variations on wireless power gain and electromagnetic safety when using skin-contact touch probe antennas. Thigh simulation models were derived from anthropometric data for the diseased population. Power gain and specific absorption rate were determined for each variation. To corroborate human model simulation results, a power-to-frequency converter was designed, benchmarked, and implanted within ex vivo porcine tissue. The experiments showed the most realistic simulations reported so far that have the best agreement with measured results. This paper indicates that touch probe powered stent systems can safely deliver significant power to an implant. This research enables frequent at-home monitoring to replace costly in-hospital quarterly check-ups.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2017.2787498</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6307-4352</orcidid><orcidid>https://orcid.org/0000-0002-5780-5016</orcidid><orcidid>https://orcid.org/0000-0003-4987-8298</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2018-03, Vol.18 (5), p.2077-2090 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_1993194160 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adults Antennas Anthropometry Biomedical monitoring Computer simulation Converters Diseases Energy harvesting Frequency converters implantable biomedical devices implantable biomedical telemetry Implants Monitoring peripheral arterial disease Power gain Probes Simulation Skin stent Stents Surgical implants Thigh Touch touch probe Wireless communication Wireless communications wireless power Wireless sensor networks |
title | Implantable Energy Harvesting Stents for Transcutaneous Wireless Monitoring of Peripheral Artery Disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implantable%20Energy%20Harvesting%20Stents%20for%20Transcutaneous%20Wireless%20Monitoring%20of%20Peripheral%20Artery%20Disease&rft.jtitle=IEEE%20sensors%20journal&rft.au=Rothfuss,%20Michael%20A.&rft.date=2018-03-01&rft.volume=18&rft.issue=5&rft.spage=2077&rft.epage=2090&rft.pages=2077-2090&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2017.2787498&rft_dat=%3Cproquest_ieee_%3E1993194160%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-59fca83552374a88e270e10b37e562f0a54168ac904fae2e6bdb3d87e9daf2c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1993194160&rft_id=info:pmid/&rft_ieee_id=8240982&rfr_iscdi=true |