Loading…

Implantable Energy Harvesting Stents for Transcutaneous Wireless Monitoring of Peripheral Artery Disease

More than five million adults in U.S. are affected by the peripheral artery disease. Current wireless stent monitors are unsuitable to use in the thigh. In this paper, wireless powering and communication with implanted stents were investigated. Specifically, we investigated the effects of thigh tiss...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2018-03, Vol.18 (5), p.2077-2090
Main Authors: Rothfuss, Michael A., Franconi, Nicholas G., Bocan, Kara N., Unadkat, Jignesh V., Gimbel, Michael L., Mickle, Marlin H., Sejdic, Ervin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-59fca83552374a88e270e10b37e562f0a54168ac904fae2e6bdb3d87e9daf2c33
cites cdi_FETCH-LOGICAL-c293t-59fca83552374a88e270e10b37e562f0a54168ac904fae2e6bdb3d87e9daf2c33
container_end_page 2090
container_issue 5
container_start_page 2077
container_title IEEE sensors journal
container_volume 18
creator Rothfuss, Michael A.
Franconi, Nicholas G.
Bocan, Kara N.
Unadkat, Jignesh V.
Gimbel, Michael L.
Mickle, Marlin H.
Sejdic, Ervin
description More than five million adults in U.S. are affected by the peripheral artery disease. Current wireless stent monitors are unsuitable to use in the thigh. In this paper, wireless powering and communication with implanted stents were investigated. Specifically, we investigated the effects of thigh tissue morphology and tissue thickness variations on wireless power gain and electromagnetic safety when using skin-contact touch probe antennas. Thigh simulation models were derived from anthropometric data for the diseased population. Power gain and specific absorption rate were determined for each variation. To corroborate human model simulation results, a power-to-frequency converter was designed, benchmarked, and implanted within ex vivo porcine tissue. The experiments showed the most realistic simulations reported so far that have the best agreement with measured results. This paper indicates that touch probe powered stent systems can safely deliver significant power to an implant. This research enables frequent at-home monitoring to replace costly in-hospital quarterly check-ups.
doi_str_mv 10.1109/JSEN.2017.2787498
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1993194160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8240982</ieee_id><sourcerecordid>1993194160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-59fca83552374a88e270e10b37e562f0a54168ac904fae2e6bdb3d87e9daf2c33</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9AcbLJp6L-9Fld48EUTD4kYDRW7MtUygpW5xtTfj3toF4mjk87zuZh5BbzgacM_vwspi8DQTjeiC00bE1Z6THlTIR17E573bJoljq70tyFcKWMW610j2yme32pfO1S0ugEw-4PtCpw18IdeHXdFGDrwPNK6RLdD5kTe08VE2gXwVCCSHQ18oXdYUdXeX0A7DYbwBdSUdYAx7oYxHABbgmF7krA9ycZp98Pk2W42k0f3-ejUfzKBNW1pGyeeaMVEpIHTtjQGgGnKVSgxqKnDkV86FxmWVx7kDAMF2lcmU02JXLRSZln9wfe_dY_TTtG8m2atC3JxNureS2zbOW4kcqwyoEhDzZY7FzeEg4SzqhSSc06YQmJ6Ft5u6YKQDgnzciZtYI-QedDnOt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993194160</pqid></control><display><type>article</type><title>Implantable Energy Harvesting Stents for Transcutaneous Wireless Monitoring of Peripheral Artery Disease</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rothfuss, Michael A. ; Franconi, Nicholas G. ; Bocan, Kara N. ; Unadkat, Jignesh V. ; Gimbel, Michael L. ; Mickle, Marlin H. ; Sejdic, Ervin</creator><creatorcontrib>Rothfuss, Michael A. ; Franconi, Nicholas G. ; Bocan, Kara N. ; Unadkat, Jignesh V. ; Gimbel, Michael L. ; Mickle, Marlin H. ; Sejdic, Ervin</creatorcontrib><description>More than five million adults in U.S. are affected by the peripheral artery disease. Current wireless stent monitors are unsuitable to use in the thigh. In this paper, wireless powering and communication with implanted stents were investigated. Specifically, we investigated the effects of thigh tissue morphology and tissue thickness variations on wireless power gain and electromagnetic safety when using skin-contact touch probe antennas. Thigh simulation models were derived from anthropometric data for the diseased population. Power gain and specific absorption rate were determined for each variation. To corroborate human model simulation results, a power-to-frequency converter was designed, benchmarked, and implanted within ex vivo porcine tissue. The experiments showed the most realistic simulations reported so far that have the best agreement with measured results. This paper indicates that touch probe powered stent systems can safely deliver significant power to an implant. This research enables frequent at-home monitoring to replace costly in-hospital quarterly check-ups.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2017.2787498</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adults ; Antennas ; Anthropometry ; Biomedical monitoring ; Computer simulation ; Converters ; Diseases ; Energy harvesting ; Frequency converters ; implantable biomedical devices ; implantable biomedical telemetry ; Implants ; Monitoring ; peripheral arterial disease ; Power gain ; Probes ; Simulation ; Skin ; stent ; Stents ; Surgical implants ; Thigh ; Touch ; touch probe ; Wireless communication ; Wireless communications ; wireless power ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2018-03, Vol.18 (5), p.2077-2090</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-59fca83552374a88e270e10b37e562f0a54168ac904fae2e6bdb3d87e9daf2c33</citedby><cites>FETCH-LOGICAL-c293t-59fca83552374a88e270e10b37e562f0a54168ac904fae2e6bdb3d87e9daf2c33</cites><orcidid>0000-0002-6307-4352 ; 0000-0002-5780-5016 ; 0000-0003-4987-8298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8240982$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rothfuss, Michael A.</creatorcontrib><creatorcontrib>Franconi, Nicholas G.</creatorcontrib><creatorcontrib>Bocan, Kara N.</creatorcontrib><creatorcontrib>Unadkat, Jignesh V.</creatorcontrib><creatorcontrib>Gimbel, Michael L.</creatorcontrib><creatorcontrib>Mickle, Marlin H.</creatorcontrib><creatorcontrib>Sejdic, Ervin</creatorcontrib><title>Implantable Energy Harvesting Stents for Transcutaneous Wireless Monitoring of Peripheral Artery Disease</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>More than five million adults in U.S. are affected by the peripheral artery disease. Current wireless stent monitors are unsuitable to use in the thigh. In this paper, wireless powering and communication with implanted stents were investigated. Specifically, we investigated the effects of thigh tissue morphology and tissue thickness variations on wireless power gain and electromagnetic safety when using skin-contact touch probe antennas. Thigh simulation models were derived from anthropometric data for the diseased population. Power gain and specific absorption rate were determined for each variation. To corroborate human model simulation results, a power-to-frequency converter was designed, benchmarked, and implanted within ex vivo porcine tissue. The experiments showed the most realistic simulations reported so far that have the best agreement with measured results. This paper indicates that touch probe powered stent systems can safely deliver significant power to an implant. This research enables frequent at-home monitoring to replace costly in-hospital quarterly check-ups.</description><subject>Adults</subject><subject>Antennas</subject><subject>Anthropometry</subject><subject>Biomedical monitoring</subject><subject>Computer simulation</subject><subject>Converters</subject><subject>Diseases</subject><subject>Energy harvesting</subject><subject>Frequency converters</subject><subject>implantable biomedical devices</subject><subject>implantable biomedical telemetry</subject><subject>Implants</subject><subject>Monitoring</subject><subject>peripheral arterial disease</subject><subject>Power gain</subject><subject>Probes</subject><subject>Simulation</subject><subject>Skin</subject><subject>stent</subject><subject>Stents</subject><subject>Surgical implants</subject><subject>Thigh</subject><subject>Touch</subject><subject>touch probe</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>wireless power</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwkAQhjdGExH9AcbLJp6L-9Fld48EUTD4kYDRW7MtUygpW5xtTfj3toF4mjk87zuZh5BbzgacM_vwspi8DQTjeiC00bE1Z6THlTIR17E573bJoljq70tyFcKWMW610j2yme32pfO1S0ugEw-4PtCpw18IdeHXdFGDrwPNK6RLdD5kTe08VE2gXwVCCSHQ18oXdYUdXeX0A7DYbwBdSUdYAx7oYxHABbgmF7krA9ycZp98Pk2W42k0f3-ejUfzKBNW1pGyeeaMVEpIHTtjQGgGnKVSgxqKnDkV86FxmWVx7kDAMF2lcmU02JXLRSZln9wfe_dY_TTtG8m2atC3JxNureS2zbOW4kcqwyoEhDzZY7FzeEg4SzqhSSc06YQmJ6Ft5u6YKQDgnzciZtYI-QedDnOt</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Rothfuss, Michael A.</creator><creator>Franconi, Nicholas G.</creator><creator>Bocan, Kara N.</creator><creator>Unadkat, Jignesh V.</creator><creator>Gimbel, Michael L.</creator><creator>Mickle, Marlin H.</creator><creator>Sejdic, Ervin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6307-4352</orcidid><orcidid>https://orcid.org/0000-0002-5780-5016</orcidid><orcidid>https://orcid.org/0000-0003-4987-8298</orcidid></search><sort><creationdate>20180301</creationdate><title>Implantable Energy Harvesting Stents for Transcutaneous Wireless Monitoring of Peripheral Artery Disease</title><author>Rothfuss, Michael A. ; Franconi, Nicholas G. ; Bocan, Kara N. ; Unadkat, Jignesh V. ; Gimbel, Michael L. ; Mickle, Marlin H. ; Sejdic, Ervin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-59fca83552374a88e270e10b37e562f0a54168ac904fae2e6bdb3d87e9daf2c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adults</topic><topic>Antennas</topic><topic>Anthropometry</topic><topic>Biomedical monitoring</topic><topic>Computer simulation</topic><topic>Converters</topic><topic>Diseases</topic><topic>Energy harvesting</topic><topic>Frequency converters</topic><topic>implantable biomedical devices</topic><topic>implantable biomedical telemetry</topic><topic>Implants</topic><topic>Monitoring</topic><topic>peripheral arterial disease</topic><topic>Power gain</topic><topic>Probes</topic><topic>Simulation</topic><topic>Skin</topic><topic>stent</topic><topic>Stents</topic><topic>Surgical implants</topic><topic>Thigh</topic><topic>Touch</topic><topic>touch probe</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>wireless power</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rothfuss, Michael A.</creatorcontrib><creatorcontrib>Franconi, Nicholas G.</creatorcontrib><creatorcontrib>Bocan, Kara N.</creatorcontrib><creatorcontrib>Unadkat, Jignesh V.</creatorcontrib><creatorcontrib>Gimbel, Michael L.</creatorcontrib><creatorcontrib>Mickle, Marlin H.</creatorcontrib><creatorcontrib>Sejdic, Ervin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rothfuss, Michael A.</au><au>Franconi, Nicholas G.</au><au>Bocan, Kara N.</au><au>Unadkat, Jignesh V.</au><au>Gimbel, Michael L.</au><au>Mickle, Marlin H.</au><au>Sejdic, Ervin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implantable Energy Harvesting Stents for Transcutaneous Wireless Monitoring of Peripheral Artery Disease</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>18</volume><issue>5</issue><spage>2077</spage><epage>2090</epage><pages>2077-2090</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>More than five million adults in U.S. are affected by the peripheral artery disease. Current wireless stent monitors are unsuitable to use in the thigh. In this paper, wireless powering and communication with implanted stents were investigated. Specifically, we investigated the effects of thigh tissue morphology and tissue thickness variations on wireless power gain and electromagnetic safety when using skin-contact touch probe antennas. Thigh simulation models were derived from anthropometric data for the diseased population. Power gain and specific absorption rate were determined for each variation. To corroborate human model simulation results, a power-to-frequency converter was designed, benchmarked, and implanted within ex vivo porcine tissue. The experiments showed the most realistic simulations reported so far that have the best agreement with measured results. This paper indicates that touch probe powered stent systems can safely deliver significant power to an implant. This research enables frequent at-home monitoring to replace costly in-hospital quarterly check-ups.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2017.2787498</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6307-4352</orcidid><orcidid>https://orcid.org/0000-0002-5780-5016</orcidid><orcidid>https://orcid.org/0000-0003-4987-8298</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2018-03, Vol.18 (5), p.2077-2090
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_1993194160
source IEEE Electronic Library (IEL) Journals
subjects Adults
Antennas
Anthropometry
Biomedical monitoring
Computer simulation
Converters
Diseases
Energy harvesting
Frequency converters
implantable biomedical devices
implantable biomedical telemetry
Implants
Monitoring
peripheral arterial disease
Power gain
Probes
Simulation
Skin
stent
Stents
Surgical implants
Thigh
Touch
touch probe
Wireless communication
Wireless communications
wireless power
Wireless sensor networks
title Implantable Energy Harvesting Stents for Transcutaneous Wireless Monitoring of Peripheral Artery Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implantable%20Energy%20Harvesting%20Stents%20for%20Transcutaneous%20Wireless%20Monitoring%20of%20Peripheral%20Artery%20Disease&rft.jtitle=IEEE%20sensors%20journal&rft.au=Rothfuss,%20Michael%20A.&rft.date=2018-03-01&rft.volume=18&rft.issue=5&rft.spage=2077&rft.epage=2090&rft.pages=2077-2090&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2017.2787498&rft_dat=%3Cproquest_ieee_%3E1993194160%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-59fca83552374a88e270e10b37e562f0a54168ac904fae2e6bdb3d87e9daf2c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1993194160&rft_id=info:pmid/&rft_ieee_id=8240982&rfr_iscdi=true