Loading…

Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances

For sums of independent random variables S n = X 1 + ⋯ + X n , Berry–Esseen-type bounds are derived for the power transport distances W p in terms of Lyapunov coefficients L p + 2 . In the case of identically distributed summands, the rates of convergence are refined under Cramér’s condition.

Saved in:
Bibliographic Details
Published in:Probability theory and related fields 2018-02, Vol.170 (1-2), p.229-262
Main Author: Bobkov, Sergey G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-b6a78fb07cd64fa682f1921ec5a528dc6bc8d443f190a35df5f540fe7feaf4dc3
cites cdi_FETCH-LOGICAL-c316t-b6a78fb07cd64fa682f1921ec5a528dc6bc8d443f190a35df5f540fe7feaf4dc3
container_end_page 262
container_issue 1-2
container_start_page 229
container_title Probability theory and related fields
container_volume 170
creator Bobkov, Sergey G.
description For sums of independent random variables S n = X 1 + ⋯ + X n , Berry–Esseen-type bounds are derived for the power transport distances W p in terms of Lyapunov coefficients L p + 2 . In the case of identically distributed summands, the rates of convergence are refined under Cramér’s condition.
doi_str_mv 10.1007/s00440-017-0756-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1993207560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993207560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b6a78fb07cd64fa682f1921ec5a528dc6bc8d443f190a35df5f540fe7feaf4dc3</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiHwAXSWqA1jr_eREqLwkCLRQG15_Ug2SryLZyNIxz_wh3wJXi0FDdVId-6ZkQ4hlxyuOUB5gwBSAgNeMijzgokjMuEyE0xAIY_JJC0qVkHOT8kZ4gYARCbFhJg7F-Ph-_NrgehcoHW7DxapDpYu7Mq9t7FfU_fR6YBNG5A2gfZrR40LfdRbum12TT8kbXQ76ttIUxywSxi1DfY6GIfn5MTrLbqL3zklr_eLl_kjWz4_PM1vl8xkvOhZXeiy8jWUxhbS66ISns8EdybXuaisKWpTWSmzlILOcutzn0vwrvROe2lNNiVX490utm97h73atPsY0kvFZ7NMDGIgtfjYMrFFjM6rLjY7HQ-KgxpcqtGlSsrUgCiRGDEymLph5eKfy_9CP5_Lefg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993207560</pqid></control><display><type>article</type><title>Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Springer Nature</source><source>ProQuest ABI/INFORM Global</source><creator>Bobkov, Sergey G.</creator><creatorcontrib>Bobkov, Sergey G.</creatorcontrib><description>For sums of independent random variables S n = X 1 + ⋯ + X n , Berry–Esseen-type bounds are derived for the power transport distances W p in terms of Lyapunov coefficients L p + 2 . In the case of identically distributed summands, the rates of convergence are refined under Cramér’s condition.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-017-0756-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Central limit theorem ; Economics ; Finance ; Independent variables ; Insurance ; Management ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Random variables ; Statistics for Business ; Theoretical ; Transport</subject><ispartof>Probability theory and related fields, 2018-02, Vol.170 (1-2), p.229-262</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Probability Theory and Related Fields is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b6a78fb07cd64fa682f1921ec5a528dc6bc8d443f190a35df5f540fe7feaf4dc3</citedby><cites>FETCH-LOGICAL-c316t-b6a78fb07cd64fa682f1921ec5a528dc6bc8d443f190a35df5f540fe7feaf4dc3</cites><orcidid>0000-0003-2838-5048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1993207560/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1993207560?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Bobkov, Sergey G.</creatorcontrib><title>Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>For sums of independent random variables S n = X 1 + ⋯ + X n , Berry–Esseen-type bounds are derived for the power transport distances W p in terms of Lyapunov coefficients L p + 2 . In the case of identically distributed summands, the rates of convergence are refined under Cramér’s condition.</description><subject>Central limit theorem</subject><subject>Economics</subject><subject>Finance</subject><subject>Independent variables</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Random variables</subject><subject>Statistics for Business</subject><subject>Theoretical</subject><subject>Transport</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kLtOAzEQRS0EEiHwAXSWqA1jr_eREqLwkCLRQG15_Ug2SryLZyNIxz_wh3wJXi0FDdVId-6ZkQ4hlxyuOUB5gwBSAgNeMijzgokjMuEyE0xAIY_JJC0qVkHOT8kZ4gYARCbFhJg7F-Ph-_NrgehcoHW7DxapDpYu7Mq9t7FfU_fR6YBNG5A2gfZrR40LfdRbum12TT8kbXQ76ttIUxywSxi1DfY6GIfn5MTrLbqL3zklr_eLl_kjWz4_PM1vl8xkvOhZXeiy8jWUxhbS66ISns8EdybXuaisKWpTWSmzlILOcutzn0vwrvROe2lNNiVX490utm97h73atPsY0kvFZ7NMDGIgtfjYMrFFjM6rLjY7HQ-KgxpcqtGlSsrUgCiRGDEymLph5eKfy_9CP5_Lefg</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Bobkov, Sergey G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2838-5048</orcidid></search><sort><creationdate>20180201</creationdate><title>Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances</title><author>Bobkov, Sergey G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b6a78fb07cd64fa682f1921ec5a528dc6bc8d443f190a35df5f540fe7feaf4dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Central limit theorem</topic><topic>Economics</topic><topic>Finance</topic><topic>Independent variables</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Random variables</topic><topic>Statistics for Business</topic><topic>Theoretical</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bobkov, Sergey G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest_Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bobkov, Sergey G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>170</volume><issue>1-2</issue><spage>229</spage><epage>262</epage><pages>229-262</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><abstract>For sums of independent random variables S n = X 1 + ⋯ + X n , Berry–Esseen-type bounds are derived for the power transport distances W p in terms of Lyapunov coefficients L p + 2 . In the case of identically distributed summands, the rates of convergence are refined under Cramér’s condition.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00440-017-0756-2</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-2838-5048</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2018-02, Vol.170 (1-2), p.229-262
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_journals_1993207560
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Springer Nature; ProQuest ABI/INFORM Global
subjects Central limit theorem
Economics
Finance
Independent variables
Insurance
Management
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Probability
Probability Theory and Stochastic Processes
Quantitative Finance
Random variables
Statistics for Business
Theoretical
Transport
title Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Berry%E2%80%93Esseen%20bounds%20and%20Edgeworth%20expansions%20in%20the%20central%20limit%20theorem%20for%20transport%20distances&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Bobkov,%20Sergey%20G.&rft.date=2018-02-01&rft.volume=170&rft.issue=1-2&rft.spage=229&rft.epage=262&rft.pages=229-262&rft.issn=0178-8051&rft.eissn=1432-2064&rft_id=info:doi/10.1007/s00440-017-0756-2&rft_dat=%3Cproquest_cross%3E1993207560%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-b6a78fb07cd64fa682f1921ec5a528dc6bc8d443f190a35df5f540fe7feaf4dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1993207560&rft_id=info:pmid/&rfr_iscdi=true