Loading…
Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances
For sums of independent random variables S n = X 1 + ⋯ + X n , Berry–Esseen-type bounds are derived for the power transport distances W p in terms of Lyapunov coefficients L p + 2 . In the case of identically distributed summands, the rates of convergence are refined under Cramér’s condition.
Saved in:
Published in: | Probability theory and related fields 2018-02, Vol.170 (1-2), p.229-262 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-b6a78fb07cd64fa682f1921ec5a528dc6bc8d443f190a35df5f540fe7feaf4dc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-b6a78fb07cd64fa682f1921ec5a528dc6bc8d443f190a35df5f540fe7feaf4dc3 |
container_end_page | 262 |
container_issue | 1-2 |
container_start_page | 229 |
container_title | Probability theory and related fields |
container_volume | 170 |
creator | Bobkov, Sergey G. |
description | For sums of independent random variables
S
n
=
X
1
+
⋯
+
X
n
, Berry–Esseen-type bounds are derived for the power transport distances
W
p
in terms of Lyapunov coefficients
L
p
+
2
. In the case of identically distributed summands, the rates of convergence are refined under Cramér’s condition. |
doi_str_mv | 10.1007/s00440-017-0756-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1993207560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993207560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b6a78fb07cd64fa682f1921ec5a528dc6bc8d443f190a35df5f540fe7feaf4dc3</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiHwAXSWqA1jr_eREqLwkCLRQG15_Ug2SryLZyNIxz_wh3wJXi0FDdVId-6ZkQ4hlxyuOUB5gwBSAgNeMijzgokjMuEyE0xAIY_JJC0qVkHOT8kZ4gYARCbFhJg7F-Ph-_NrgehcoHW7DxapDpYu7Mq9t7FfU_fR6YBNG5A2gfZrR40LfdRbum12TT8kbXQ76ttIUxywSxi1DfY6GIfn5MTrLbqL3zklr_eLl_kjWz4_PM1vl8xkvOhZXeiy8jWUxhbS66ISns8EdybXuaisKWpTWSmzlILOcutzn0vwrvROe2lNNiVX490utm97h73atPsY0kvFZ7NMDGIgtfjYMrFFjM6rLjY7HQ-KgxpcqtGlSsrUgCiRGDEymLph5eKfy_9CP5_Lefg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993207560</pqid></control><display><type>article</type><title>Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Springer Nature</source><source>ProQuest ABI/INFORM Global</source><creator>Bobkov, Sergey G.</creator><creatorcontrib>Bobkov, Sergey G.</creatorcontrib><description>For sums of independent random variables
S
n
=
X
1
+
⋯
+
X
n
, Berry–Esseen-type bounds are derived for the power transport distances
W
p
in terms of Lyapunov coefficients
L
p
+
2
. In the case of identically distributed summands, the rates of convergence are refined under Cramér’s condition.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-017-0756-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Central limit theorem ; Economics ; Finance ; Independent variables ; Insurance ; Management ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Random variables ; Statistics for Business ; Theoretical ; Transport</subject><ispartof>Probability theory and related fields, 2018-02, Vol.170 (1-2), p.229-262</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Probability Theory and Related Fields is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b6a78fb07cd64fa682f1921ec5a528dc6bc8d443f190a35df5f540fe7feaf4dc3</citedby><cites>FETCH-LOGICAL-c316t-b6a78fb07cd64fa682f1921ec5a528dc6bc8d443f190a35df5f540fe7feaf4dc3</cites><orcidid>0000-0003-2838-5048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1993207560/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1993207560?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Bobkov, Sergey G.</creatorcontrib><title>Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>For sums of independent random variables
S
n
=
X
1
+
⋯
+
X
n
, Berry–Esseen-type bounds are derived for the power transport distances
W
p
in terms of Lyapunov coefficients
L
p
+
2
. In the case of identically distributed summands, the rates of convergence are refined under Cramér’s condition.</description><subject>Central limit theorem</subject><subject>Economics</subject><subject>Finance</subject><subject>Independent variables</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Random variables</subject><subject>Statistics for Business</subject><subject>Theoretical</subject><subject>Transport</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kLtOAzEQRS0EEiHwAXSWqA1jr_eREqLwkCLRQG15_Ug2SryLZyNIxz_wh3wJXi0FDdVId-6ZkQ4hlxyuOUB5gwBSAgNeMijzgokjMuEyE0xAIY_JJC0qVkHOT8kZ4gYARCbFhJg7F-Ph-_NrgehcoHW7DxapDpYu7Mq9t7FfU_fR6YBNG5A2gfZrR40LfdRbum12TT8kbXQ76ttIUxywSxi1DfY6GIfn5MTrLbqL3zklr_eLl_kjWz4_PM1vl8xkvOhZXeiy8jWUxhbS66ISns8EdybXuaisKWpTWSmzlILOcutzn0vwrvROe2lNNiVX490utm97h73atPsY0kvFZ7NMDGIgtfjYMrFFjM6rLjY7HQ-KgxpcqtGlSsrUgCiRGDEymLph5eKfy_9CP5_Lefg</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Bobkov, Sergey G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2838-5048</orcidid></search><sort><creationdate>20180201</creationdate><title>Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances</title><author>Bobkov, Sergey G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b6a78fb07cd64fa682f1921ec5a528dc6bc8d443f190a35df5f540fe7feaf4dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Central limit theorem</topic><topic>Economics</topic><topic>Finance</topic><topic>Independent variables</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Random variables</topic><topic>Statistics for Business</topic><topic>Theoretical</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bobkov, Sergey G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest_Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bobkov, Sergey G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>170</volume><issue>1-2</issue><spage>229</spage><epage>262</epage><pages>229-262</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><abstract>For sums of independent random variables
S
n
=
X
1
+
⋯
+
X
n
, Berry–Esseen-type bounds are derived for the power transport distances
W
p
in terms of Lyapunov coefficients
L
p
+
2
. In the case of identically distributed summands, the rates of convergence are refined under Cramér’s condition.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00440-017-0756-2</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-2838-5048</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-8051 |
ispartof | Probability theory and related fields, 2018-02, Vol.170 (1-2), p.229-262 |
issn | 0178-8051 1432-2064 |
language | eng |
recordid | cdi_proquest_journals_1993207560 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Springer Nature; ProQuest ABI/INFORM Global |
subjects | Central limit theorem Economics Finance Independent variables Insurance Management Mathematical and Computational Biology Mathematical and Computational Physics Mathematics Mathematics and Statistics Operations Research/Decision Theory Probability Probability Theory and Stochastic Processes Quantitative Finance Random variables Statistics for Business Theoretical Transport |
title | Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Berry%E2%80%93Esseen%20bounds%20and%20Edgeworth%20expansions%20in%20the%20central%20limit%20theorem%20for%20transport%20distances&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Bobkov,%20Sergey%20G.&rft.date=2018-02-01&rft.volume=170&rft.issue=1-2&rft.spage=229&rft.epage=262&rft.pages=229-262&rft.issn=0178-8051&rft.eissn=1432-2064&rft_id=info:doi/10.1007/s00440-017-0756-2&rft_dat=%3Cproquest_cross%3E1993207560%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-b6a78fb07cd64fa682f1921ec5a528dc6bc8d443f190a35df5f540fe7feaf4dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1993207560&rft_id=info:pmid/&rfr_iscdi=true |