Loading…

Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones

Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT )-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2018-04, Vol.49 (4), p.1031-1043
Main Authors: Jain, Divya, Seidman, David N., Barrick, Erin J., DuPont, John N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-706d0df3be8b7c8a5395995c359f9a85003db1a65d620075e69b3d835de62a553
cites cdi_FETCH-LOGICAL-c316t-706d0df3be8b7c8a5395995c359f9a85003db1a65d620075e69b3d835de62a553
container_end_page 1043
container_issue 4
container_start_page 1031
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 49
creator Jain, Divya
Seidman, David N.
Barrick, Erin J.
DuPont, John N.
description Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT )-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of QLT -treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the QLT -treated base-metal. While C in the QLT -treated base-metal is consumed primarily in MC and M 2 C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M 2 C carbide precipitates. The role of M 2 C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the QLT -treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.
doi_str_mv 10.1007/s11661-018-4470-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1993313138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993313138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-706d0df3be8b7c8a5395995c359f9a85003db1a65d620075e69b3d835de62a553</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhhdR8PMHeAt4jmaaJrs5LsWPgmjRiuAlZDezNdJuapIK_hd_rKnrwYvMYebwPu8w8xbFKbBzYKy8iABSAmVQ0fG4ZBR2igMQY05BjdlunlnJqZAjvl8cxvjGGAPF5UHxVSe_orPgGyRzv_KLYNavriXT_gNjcguTnO-J70i9iQl7l5A8JtO4pUufxPSWTExonEUyC9i6tUsD4HpiyPxhOqN1jC6TlgAjz4nM2kTuXPZAXP7w0xTJMy4tuUGTaN112G7VL77HeFzsdWYZ8eS3HxVPV5fzyQ29vb-eTupb2nKQiZZMWmY73mDVlG1lBFdCKdFyoTplKsEYtw0YKawc5V8JlKrhtuLCohwZIfhRcTb4roN_3-S79ZvfhD6v1KAU55CryioYVG3wMQbs9Dq4lQmfGpjehqCHEHQOQW9D0JCZ0cDErO0XGP44_wt9A555iWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993313138</pqid></control><display><type>article</type><title>Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones</title><source>Springer Nature</source><creator>Jain, Divya ; Seidman, David N. ; Barrick, Erin J. ; DuPont, John N.</creator><creatorcontrib>Jain, Divya ; Seidman, David N. ; Barrick, Erin J. ; DuPont, John N.</creatorcontrib><description>Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT )-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of QLT -treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the QLT -treated base-metal. While C in the QLT -treated base-metal is consumed primarily in MC and M 2 C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M 2 C carbide precipitates. The role of M 2 C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the QLT -treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-018-4470-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Austenite ; Carbides ; Characterization and Evaluation of Materials ; Chemical precipitation ; Chemistry and Materials Science ; Chromium ; Heat affected zone ; Heat treating ; Manganese ; Martensite ; Martensitic stainless steels ; Martensitic transformations ; Materials Science ; Mathematical analysis ; Mechanical properties ; Metallic Materials ; Metallurgy ; Microhardness ; Microstructure ; Molybdenum ; Nanotechnology ; Nickel ; Precipitates ; Structural Materials ; Surfaces and Interfaces ; Thermal resistance ; Thermal stability ; Thin Films ; TRIP steels</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-04, Vol.49 (4), p.1031-1043</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2018</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-706d0df3be8b7c8a5395995c359f9a85003db1a65d620075e69b3d835de62a553</citedby><cites>FETCH-LOGICAL-c316t-706d0df3be8b7c8a5395995c359f9a85003db1a65d620075e69b3d835de62a553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jain, Divya</creatorcontrib><creatorcontrib>Seidman, David N.</creatorcontrib><creatorcontrib>Barrick, Erin J.</creatorcontrib><creatorcontrib>DuPont, John N.</creatorcontrib><title>Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT )-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of QLT -treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the QLT -treated base-metal. While C in the QLT -treated base-metal is consumed primarily in MC and M 2 C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M 2 C carbide precipitates. The role of M 2 C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the QLT -treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.</description><subject>Austenite</subject><subject>Carbides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical precipitation</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Heat affected zone</subject><subject>Heat treating</subject><subject>Manganese</subject><subject>Martensite</subject><subject>Martensitic stainless steels</subject><subject>Martensitic transformations</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Molybdenum</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Precipitates</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermal resistance</subject><subject>Thermal stability</subject><subject>Thin Films</subject><subject>TRIP steels</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LAzEQhhdR8PMHeAt4jmaaJrs5LsWPgmjRiuAlZDezNdJuapIK_hd_rKnrwYvMYebwPu8w8xbFKbBzYKy8iABSAmVQ0fG4ZBR2igMQY05BjdlunlnJqZAjvl8cxvjGGAPF5UHxVSe_orPgGyRzv_KLYNavriXT_gNjcguTnO-J70i9iQl7l5A8JtO4pUufxPSWTExonEUyC9i6tUsD4HpiyPxhOqN1jC6TlgAjz4nM2kTuXPZAXP7w0xTJMy4tuUGTaN112G7VL77HeFzsdWYZ8eS3HxVPV5fzyQ29vb-eTupb2nKQiZZMWmY73mDVlG1lBFdCKdFyoTplKsEYtw0YKawc5V8JlKrhtuLCohwZIfhRcTb4roN_3-S79ZvfhD6v1KAU55CryioYVG3wMQbs9Dq4lQmfGpjehqCHEHQOQW9D0JCZ0cDErO0XGP44_wt9A555iWM</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Jain, Divya</creator><creator>Seidman, David N.</creator><creator>Barrick, Erin J.</creator><creator>DuPont, John N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180401</creationdate><title>Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones</title><author>Jain, Divya ; Seidman, David N. ; Barrick, Erin J. ; DuPont, John N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-706d0df3be8b7c8a5395995c359f9a85003db1a65d620075e69b3d835de62a553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Austenite</topic><topic>Carbides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical precipitation</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Heat affected zone</topic><topic>Heat treating</topic><topic>Manganese</topic><topic>Martensite</topic><topic>Martensitic stainless steels</topic><topic>Martensitic transformations</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Molybdenum</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Precipitates</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermal resistance</topic><topic>Thermal stability</topic><topic>Thin Films</topic><topic>TRIP steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Divya</creatorcontrib><creatorcontrib>Seidman, David N.</creatorcontrib><creatorcontrib>Barrick, Erin J.</creatorcontrib><creatorcontrib>DuPont, John N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Divya</au><au>Seidman, David N.</au><au>Barrick, Erin J.</au><au>DuPont, John N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>49</volume><issue>4</issue><spage>1031</spage><epage>1043</epage><pages>1031-1043</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT )-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of QLT -treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the QLT -treated base-metal. While C in the QLT -treated base-metal is consumed primarily in MC and M 2 C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M 2 C carbide precipitates. The role of M 2 C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the QLT -treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-018-4470-1</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-04, Vol.49 (4), p.1031-1043
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_1993313138
source Springer Nature
subjects Austenite
Carbides
Characterization and Evaluation of Materials
Chemical precipitation
Chemistry and Materials Science
Chromium
Heat affected zone
Heat treating
Manganese
Martensite
Martensitic stainless steels
Martensitic transformations
Materials Science
Mathematical analysis
Mechanical properties
Metallic Materials
Metallurgy
Microhardness
Microstructure
Molybdenum
Nanotechnology
Nickel
Precipitates
Structural Materials
Surfaces and Interfaces
Thermal resistance
Thermal stability
Thin Films
TRIP steels
title Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atom-Probe%20Tomographic%20Investigation%20of%20Austenite%20Stability%20and%20Carbide%20Precipitation%20in%20a%20TRIP-Assisted%2010%20Wt%20Pct%20Ni%20Steel%20and%20Its%20Weld%20Heat-Affected%20Zones&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Jain,%20Divya&rft.date=2018-04-01&rft.volume=49&rft.issue=4&rft.spage=1031&rft.epage=1043&rft.pages=1031-1043&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-018-4470-1&rft_dat=%3Cproquest_cross%3E1993313138%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-706d0df3be8b7c8a5395995c359f9a85003db1a65d620075e69b3d835de62a553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1993313138&rft_id=info:pmid/&rfr_iscdi=true