Loading…
Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones
Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT )-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the...
Saved in:
Published in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2018-04, Vol.49 (4), p.1031-1043 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-706d0df3be8b7c8a5395995c359f9a85003db1a65d620075e69b3d835de62a553 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-706d0df3be8b7c8a5395995c359f9a85003db1a65d620075e69b3d835de62a553 |
container_end_page | 1043 |
container_issue | 4 |
container_start_page | 1031 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 49 |
creator | Jain, Divya Seidman, David N. Barrick, Erin J. DuPont, John N. |
description | Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed
via
multistep intercritical
Quench-Lamellarization-Tempering
(
QLT
)-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of
QLT
-treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the
QLT
-treated base-metal. While C in the
QLT
-treated base-metal is consumed primarily in MC and M
2
C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M
2
C carbide precipitates. The role of M
2
C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the
QLT
-treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels. |
doi_str_mv | 10.1007/s11661-018-4470-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1993313138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993313138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-706d0df3be8b7c8a5395995c359f9a85003db1a65d620075e69b3d835de62a553</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhhdR8PMHeAt4jmaaJrs5LsWPgmjRiuAlZDezNdJuapIK_hd_rKnrwYvMYebwPu8w8xbFKbBzYKy8iABSAmVQ0fG4ZBR2igMQY05BjdlunlnJqZAjvl8cxvjGGAPF5UHxVSe_orPgGyRzv_KLYNavriXT_gNjcguTnO-J70i9iQl7l5A8JtO4pUufxPSWTExonEUyC9i6tUsD4HpiyPxhOqN1jC6TlgAjz4nM2kTuXPZAXP7w0xTJMy4tuUGTaN112G7VL77HeFzsdWYZ8eS3HxVPV5fzyQ29vb-eTupb2nKQiZZMWmY73mDVlG1lBFdCKdFyoTplKsEYtw0YKawc5V8JlKrhtuLCohwZIfhRcTb4roN_3-S79ZvfhD6v1KAU55CryioYVG3wMQbs9Dq4lQmfGpjehqCHEHQOQW9D0JCZ0cDErO0XGP44_wt9A555iWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993313138</pqid></control><display><type>article</type><title>Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones</title><source>Springer Nature</source><creator>Jain, Divya ; Seidman, David N. ; Barrick, Erin J. ; DuPont, John N.</creator><creatorcontrib>Jain, Divya ; Seidman, David N. ; Barrick, Erin J. ; DuPont, John N.</creatorcontrib><description>Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed
via
multistep intercritical
Quench-Lamellarization-Tempering
(
QLT
)-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of
QLT
-treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the
QLT
-treated base-metal. While C in the
QLT
-treated base-metal is consumed primarily in MC and M
2
C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M
2
C carbide precipitates. The role of M
2
C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the
QLT
-treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-018-4470-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Austenite ; Carbides ; Characterization and Evaluation of Materials ; Chemical precipitation ; Chemistry and Materials Science ; Chromium ; Heat affected zone ; Heat treating ; Manganese ; Martensite ; Martensitic stainless steels ; Martensitic transformations ; Materials Science ; Mathematical analysis ; Mechanical properties ; Metallic Materials ; Metallurgy ; Microhardness ; Microstructure ; Molybdenum ; Nanotechnology ; Nickel ; Precipitates ; Structural Materials ; Surfaces and Interfaces ; Thermal resistance ; Thermal stability ; Thin Films ; TRIP steels</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-04, Vol.49 (4), p.1031-1043</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2018</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-706d0df3be8b7c8a5395995c359f9a85003db1a65d620075e69b3d835de62a553</citedby><cites>FETCH-LOGICAL-c316t-706d0df3be8b7c8a5395995c359f9a85003db1a65d620075e69b3d835de62a553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jain, Divya</creatorcontrib><creatorcontrib>Seidman, David N.</creatorcontrib><creatorcontrib>Barrick, Erin J.</creatorcontrib><creatorcontrib>DuPont, John N.</creatorcontrib><title>Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed
via
multistep intercritical
Quench-Lamellarization-Tempering
(
QLT
)-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of
QLT
-treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the
QLT
-treated base-metal. While C in the
QLT
-treated base-metal is consumed primarily in MC and M
2
C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M
2
C carbide precipitates. The role of M
2
C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the
QLT
-treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.</description><subject>Austenite</subject><subject>Carbides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical precipitation</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Heat affected zone</subject><subject>Heat treating</subject><subject>Manganese</subject><subject>Martensite</subject><subject>Martensitic stainless steels</subject><subject>Martensitic transformations</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Molybdenum</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Precipitates</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermal resistance</subject><subject>Thermal stability</subject><subject>Thin Films</subject><subject>TRIP steels</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LAzEQhhdR8PMHeAt4jmaaJrs5LsWPgmjRiuAlZDezNdJuapIK_hd_rKnrwYvMYebwPu8w8xbFKbBzYKy8iABSAmVQ0fG4ZBR2igMQY05BjdlunlnJqZAjvl8cxvjGGAPF5UHxVSe_orPgGyRzv_KLYNavriXT_gNjcguTnO-J70i9iQl7l5A8JtO4pUufxPSWTExonEUyC9i6tUsD4HpiyPxhOqN1jC6TlgAjz4nM2kTuXPZAXP7w0xTJMy4tuUGTaN112G7VL77HeFzsdWYZ8eS3HxVPV5fzyQ29vb-eTupb2nKQiZZMWmY73mDVlG1lBFdCKdFyoTplKsEYtw0YKawc5V8JlKrhtuLCohwZIfhRcTb4roN_3-S79ZvfhD6v1KAU55CryioYVG3wMQbs9Dq4lQmfGpjehqCHEHQOQW9D0JCZ0cDErO0XGP44_wt9A555iWM</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Jain, Divya</creator><creator>Seidman, David N.</creator><creator>Barrick, Erin J.</creator><creator>DuPont, John N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180401</creationdate><title>Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones</title><author>Jain, Divya ; Seidman, David N. ; Barrick, Erin J. ; DuPont, John N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-706d0df3be8b7c8a5395995c359f9a85003db1a65d620075e69b3d835de62a553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Austenite</topic><topic>Carbides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical precipitation</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Heat affected zone</topic><topic>Heat treating</topic><topic>Manganese</topic><topic>Martensite</topic><topic>Martensitic stainless steels</topic><topic>Martensitic transformations</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Molybdenum</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Precipitates</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermal resistance</topic><topic>Thermal stability</topic><topic>Thin Films</topic><topic>TRIP steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Divya</creatorcontrib><creatorcontrib>Seidman, David N.</creatorcontrib><creatorcontrib>Barrick, Erin J.</creatorcontrib><creatorcontrib>DuPont, John N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Divya</au><au>Seidman, David N.</au><au>Barrick, Erin J.</au><au>DuPont, John N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>49</volume><issue>4</issue><spage>1031</spage><epage>1043</epage><pages>1031-1043</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed
via
multistep intercritical
Quench-Lamellarization-Tempering
(
QLT
)-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of
QLT
-treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the
QLT
-treated base-metal. While C in the
QLT
-treated base-metal is consumed primarily in MC and M
2
C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M
2
C carbide precipitates. The role of M
2
C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the
QLT
-treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-018-4470-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-04, Vol.49 (4), p.1031-1043 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_1993313138 |
source | Springer Nature |
subjects | Austenite Carbides Characterization and Evaluation of Materials Chemical precipitation Chemistry and Materials Science Chromium Heat affected zone Heat treating Manganese Martensite Martensitic stainless steels Martensitic transformations Materials Science Mathematical analysis Mechanical properties Metallic Materials Metallurgy Microhardness Microstructure Molybdenum Nanotechnology Nickel Precipitates Structural Materials Surfaces and Interfaces Thermal resistance Thermal stability Thin Films TRIP steels |
title | Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atom-Probe%20Tomographic%20Investigation%20of%20Austenite%20Stability%20and%20Carbide%20Precipitation%20in%20a%20TRIP-Assisted%2010%20Wt%20Pct%20Ni%20Steel%20and%20Its%20Weld%20Heat-Affected%20Zones&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Jain,%20Divya&rft.date=2018-04-01&rft.volume=49&rft.issue=4&rft.spage=1031&rft.epage=1043&rft.pages=1031-1043&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-018-4470-1&rft_dat=%3Cproquest_cross%3E1993313138%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-706d0df3be8b7c8a5395995c359f9a85003db1a65d620075e69b3d835de62a553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1993313138&rft_id=info:pmid/&rfr_iscdi=true |