Loading…
Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making
In this paper, we introduced some similarity measures for bipolar neutrosophic sets such as; Dice similarity measure, weighted Dice similarity measure, Hybrid vector similarity measure and weighted Hybrid vector similarity measure. Also we examine the propositions of the similarity measures. Further...
Saved in:
Published in: | Neural computing & applications 2018-02, Vol.29 (3), p.739-748 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-8b69d317ecacdfd5abfb0dc272cd0a205d4bae947811e7b4a62ffee8fb766fd23 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-8b69d317ecacdfd5abfb0dc272cd0a205d4bae947811e7b4a62ffee8fb766fd23 |
container_end_page | 748 |
container_issue | 3 |
container_start_page | 739 |
container_title | Neural computing & applications |
container_volume | 29 |
creator | Uluçay, Vakkas Deli, Irfan Şahin, Mehmet |
description | In this paper, we introduced some similarity measures for bipolar neutrosophic sets such as; Dice similarity measure, weighted Dice similarity measure, Hybrid vector similarity measure and weighted Hybrid vector similarity measure. Also we examine the propositions of the similarity measures. Furthermore, a multi-criteria decision-making method for bipolar neutrosophic set is developed based on these given similarity measures. Then, a practical example is shown to verify the feasibility of the new method. Finally, we compare the proposed method with the existing methods in order to demonstrate the practicality and effectiveness of the developed method in this paper. |
doi_str_mv | 10.1007/s00521-016-2479-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1993415061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993415061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8b69d317ecacdfd5abfb0dc272cd0a205d4bae947811e7b4a62ffee8fb766fd23</originalsourceid><addsrcrecordid>eNp1kDtPwzAQxy0EEqXwAdgsMQfs2HGSEVW8pEoMwGw59rl1mxe2M_Tb4ygMLEwn3f9xuh9Ct5TcU0LKh0BIkdOMUJHlvKwzeoZWlDOWMVJU52hFap5UwdklugrhQAjhoipW6PjhOtcq7-IJd6DC5CHgweLGjUNa4x6m6IcwjHuncYAYsOoNjntwHqtxbJ1W0Q09jgPupja6sQWsUxt4p7AB7cKsduro-t01urCqDXDzO9fo6_npc_Oabd9f3jaP20yzoo5Z1YjaMFqCVtpYU6jGNsTovMy1ISonheGNgpqXFaVQNlyJ3FqAyjalENbkbI3ult7RD98ThCgPw-T7dFLSumacFkTQ5KKLS6f_ggcrR-865U-SEjkzlQtTmZjKmamcM_mSCcnb78D_af439AMWGH0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993415061</pqid></control><display><type>article</type><title>Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making</title><source>Springer Link</source><creator>Uluçay, Vakkas ; Deli, Irfan ; Şahin, Mehmet</creator><creatorcontrib>Uluçay, Vakkas ; Deli, Irfan ; Şahin, Mehmet</creatorcontrib><description>In this paper, we introduced some similarity measures for bipolar neutrosophic sets such as; Dice similarity measure, weighted Dice similarity measure, Hybrid vector similarity measure and weighted Hybrid vector similarity measure. Also we examine the propositions of the similarity measures. Furthermore, a multi-criteria decision-making method for bipolar neutrosophic set is developed based on these given similarity measures. Then, a practical example is shown to verify the feasibility of the new method. Finally, we compare the proposed method with the existing methods in order to demonstrate the practicality and effectiveness of the developed method in this paper.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-016-2479-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Decision making ; Image Processing and Computer Vision ; Multiple criteria decision making ; Multiple criterion ; Original Article ; Probability and Statistics in Computer Science ; Similarity ; Similarity measures</subject><ispartof>Neural computing & applications, 2018-02, Vol.29 (3), p.739-748</ispartof><rights>The Natural Computing Applications Forum 2016</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8b69d317ecacdfd5abfb0dc272cd0a205d4bae947811e7b4a62ffee8fb766fd23</citedby><cites>FETCH-LOGICAL-c359t-8b69d317ecacdfd5abfb0dc272cd0a205d4bae947811e7b4a62ffee8fb766fd23</cites><orcidid>0000-0001-5580-7037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Uluçay, Vakkas</creatorcontrib><creatorcontrib>Deli, Irfan</creatorcontrib><creatorcontrib>Şahin, Mehmet</creatorcontrib><title>Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>In this paper, we introduced some similarity measures for bipolar neutrosophic sets such as; Dice similarity measure, weighted Dice similarity measure, Hybrid vector similarity measure and weighted Hybrid vector similarity measure. Also we examine the propositions of the similarity measures. Furthermore, a multi-criteria decision-making method for bipolar neutrosophic set is developed based on these given similarity measures. Then, a practical example is shown to verify the feasibility of the new method. Finally, we compare the proposed method with the existing methods in order to demonstrate the practicality and effectiveness of the developed method in this paper.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Decision making</subject><subject>Image Processing and Computer Vision</subject><subject>Multiple criteria decision making</subject><subject>Multiple criterion</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Similarity</subject><subject>Similarity measures</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAQxy0EEqXwAdgsMQfs2HGSEVW8pEoMwGw59rl1mxe2M_Tb4ygMLEwn3f9xuh9Ct5TcU0LKh0BIkdOMUJHlvKwzeoZWlDOWMVJU52hFap5UwdklugrhQAjhoipW6PjhOtcq7-IJd6DC5CHgweLGjUNa4x6m6IcwjHuncYAYsOoNjntwHqtxbJ1W0Q09jgPupja6sQWsUxt4p7AB7cKsduro-t01urCqDXDzO9fo6_npc_Oabd9f3jaP20yzoo5Z1YjaMFqCVtpYU6jGNsTovMy1ISonheGNgpqXFaVQNlyJ3FqAyjalENbkbI3ult7RD98ThCgPw-T7dFLSumacFkTQ5KKLS6f_ggcrR-865U-SEjkzlQtTmZjKmamcM_mSCcnb78D_af439AMWGH0g</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Uluçay, Vakkas</creator><creator>Deli, Irfan</creator><creator>Şahin, Mehmet</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5580-7037</orcidid></search><sort><creationdate>20180201</creationdate><title>Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making</title><author>Uluçay, Vakkas ; Deli, Irfan ; Şahin, Mehmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8b69d317ecacdfd5abfb0dc272cd0a205d4bae947811e7b4a62ffee8fb766fd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Decision making</topic><topic>Image Processing and Computer Vision</topic><topic>Multiple criteria decision making</topic><topic>Multiple criterion</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Similarity</topic><topic>Similarity measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uluçay, Vakkas</creatorcontrib><creatorcontrib>Deli, Irfan</creatorcontrib><creatorcontrib>Şahin, Mehmet</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uluçay, Vakkas</au><au>Deli, Irfan</au><au>Şahin, Mehmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>29</volume><issue>3</issue><spage>739</spage><epage>748</epage><pages>739-748</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this paper, we introduced some similarity measures for bipolar neutrosophic sets such as; Dice similarity measure, weighted Dice similarity measure, Hybrid vector similarity measure and weighted Hybrid vector similarity measure. Also we examine the propositions of the similarity measures. Furthermore, a multi-criteria decision-making method for bipolar neutrosophic set is developed based on these given similarity measures. Then, a practical example is shown to verify the feasibility of the new method. Finally, we compare the proposed method with the existing methods in order to demonstrate the practicality and effectiveness of the developed method in this paper.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-016-2479-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5580-7037</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2018-02, Vol.29 (3), p.739-748 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_1993415061 |
source | Springer Link |
subjects | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Decision making Image Processing and Computer Vision Multiple criteria decision making Multiple criterion Original Article Probability and Statistics in Computer Science Similarity Similarity measures |
title | Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Similarity%20measures%20of%20bipolar%20neutrosophic%20sets%20and%20their%20application%20to%20multiple%20criteria%20decision%20making&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Ulu%C3%A7ay,%20Vakkas&rft.date=2018-02-01&rft.volume=29&rft.issue=3&rft.spage=739&rft.epage=748&rft.pages=739-748&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-016-2479-1&rft_dat=%3Cproquest_cross%3E1993415061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-8b69d317ecacdfd5abfb0dc272cd0a205d4bae947811e7b4a62ffee8fb766fd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1993415061&rft_id=info:pmid/&rfr_iscdi=true |