Loading…

Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making

In this paper, we introduced some similarity measures for bipolar neutrosophic sets such as; Dice similarity measure, weighted Dice similarity measure, Hybrid vector similarity measure and weighted Hybrid vector similarity measure. Also we examine the propositions of the similarity measures. Further...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2018-02, Vol.29 (3), p.739-748
Main Authors: Uluçay, Vakkas, Deli, Irfan, Şahin, Mehmet
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-8b69d317ecacdfd5abfb0dc272cd0a205d4bae947811e7b4a62ffee8fb766fd23
cites cdi_FETCH-LOGICAL-c359t-8b69d317ecacdfd5abfb0dc272cd0a205d4bae947811e7b4a62ffee8fb766fd23
container_end_page 748
container_issue 3
container_start_page 739
container_title Neural computing & applications
container_volume 29
creator Uluçay, Vakkas
Deli, Irfan
Şahin, Mehmet
description In this paper, we introduced some similarity measures for bipolar neutrosophic sets such as; Dice similarity measure, weighted Dice similarity measure, Hybrid vector similarity measure and weighted Hybrid vector similarity measure. Also we examine the propositions of the similarity measures. Furthermore, a multi-criteria decision-making method for bipolar neutrosophic set is developed based on these given similarity measures. Then, a practical example is shown to verify the feasibility of the new method. Finally, we compare the proposed method with the existing methods in order to demonstrate the practicality and effectiveness of the developed method in this paper.
doi_str_mv 10.1007/s00521-016-2479-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1993415061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993415061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8b69d317ecacdfd5abfb0dc272cd0a205d4bae947811e7b4a62ffee8fb766fd23</originalsourceid><addsrcrecordid>eNp1kDtPwzAQxy0EEqXwAdgsMQfs2HGSEVW8pEoMwGw59rl1mxe2M_Tb4ygMLEwn3f9xuh9Ct5TcU0LKh0BIkdOMUJHlvKwzeoZWlDOWMVJU52hFap5UwdklugrhQAjhoipW6PjhOtcq7-IJd6DC5CHgweLGjUNa4x6m6IcwjHuncYAYsOoNjntwHqtxbJ1W0Q09jgPupja6sQWsUxt4p7AB7cKsduro-t01urCqDXDzO9fo6_npc_Oabd9f3jaP20yzoo5Z1YjaMFqCVtpYU6jGNsTovMy1ISonheGNgpqXFaVQNlyJ3FqAyjalENbkbI3ult7RD98ThCgPw-T7dFLSumacFkTQ5KKLS6f_ggcrR-865U-SEjkzlQtTmZjKmamcM_mSCcnb78D_af439AMWGH0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993415061</pqid></control><display><type>article</type><title>Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making</title><source>Springer Link</source><creator>Uluçay, Vakkas ; Deli, Irfan ; Şahin, Mehmet</creator><creatorcontrib>Uluçay, Vakkas ; Deli, Irfan ; Şahin, Mehmet</creatorcontrib><description>In this paper, we introduced some similarity measures for bipolar neutrosophic sets such as; Dice similarity measure, weighted Dice similarity measure, Hybrid vector similarity measure and weighted Hybrid vector similarity measure. Also we examine the propositions of the similarity measures. Furthermore, a multi-criteria decision-making method for bipolar neutrosophic set is developed based on these given similarity measures. Then, a practical example is shown to verify the feasibility of the new method. Finally, we compare the proposed method with the existing methods in order to demonstrate the practicality and effectiveness of the developed method in this paper.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-016-2479-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Decision making ; Image Processing and Computer Vision ; Multiple criteria decision making ; Multiple criterion ; Original Article ; Probability and Statistics in Computer Science ; Similarity ; Similarity measures</subject><ispartof>Neural computing &amp; applications, 2018-02, Vol.29 (3), p.739-748</ispartof><rights>The Natural Computing Applications Forum 2016</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8b69d317ecacdfd5abfb0dc272cd0a205d4bae947811e7b4a62ffee8fb766fd23</citedby><cites>FETCH-LOGICAL-c359t-8b69d317ecacdfd5abfb0dc272cd0a205d4bae947811e7b4a62ffee8fb766fd23</cites><orcidid>0000-0001-5580-7037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Uluçay, Vakkas</creatorcontrib><creatorcontrib>Deli, Irfan</creatorcontrib><creatorcontrib>Şahin, Mehmet</creatorcontrib><title>Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>In this paper, we introduced some similarity measures for bipolar neutrosophic sets such as; Dice similarity measure, weighted Dice similarity measure, Hybrid vector similarity measure and weighted Hybrid vector similarity measure. Also we examine the propositions of the similarity measures. Furthermore, a multi-criteria decision-making method for bipolar neutrosophic set is developed based on these given similarity measures. Then, a practical example is shown to verify the feasibility of the new method. Finally, we compare the proposed method with the existing methods in order to demonstrate the practicality and effectiveness of the developed method in this paper.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Decision making</subject><subject>Image Processing and Computer Vision</subject><subject>Multiple criteria decision making</subject><subject>Multiple criterion</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Similarity</subject><subject>Similarity measures</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAQxy0EEqXwAdgsMQfs2HGSEVW8pEoMwGw59rl1mxe2M_Tb4ygMLEwn3f9xuh9Ct5TcU0LKh0BIkdOMUJHlvKwzeoZWlDOWMVJU52hFap5UwdklugrhQAjhoipW6PjhOtcq7-IJd6DC5CHgweLGjUNa4x6m6IcwjHuncYAYsOoNjntwHqtxbJ1W0Q09jgPupja6sQWsUxt4p7AB7cKsduro-t01urCqDXDzO9fo6_npc_Oabd9f3jaP20yzoo5Z1YjaMFqCVtpYU6jGNsTovMy1ISonheGNgpqXFaVQNlyJ3FqAyjalENbkbI3ult7RD98ThCgPw-T7dFLSumacFkTQ5KKLS6f_ggcrR-865U-SEjkzlQtTmZjKmamcM_mSCcnb78D_af439AMWGH0g</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Uluçay, Vakkas</creator><creator>Deli, Irfan</creator><creator>Şahin, Mehmet</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5580-7037</orcidid></search><sort><creationdate>20180201</creationdate><title>Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making</title><author>Uluçay, Vakkas ; Deli, Irfan ; Şahin, Mehmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8b69d317ecacdfd5abfb0dc272cd0a205d4bae947811e7b4a62ffee8fb766fd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Decision making</topic><topic>Image Processing and Computer Vision</topic><topic>Multiple criteria decision making</topic><topic>Multiple criterion</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Similarity</topic><topic>Similarity measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uluçay, Vakkas</creatorcontrib><creatorcontrib>Deli, Irfan</creatorcontrib><creatorcontrib>Şahin, Mehmet</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uluçay, Vakkas</au><au>Deli, Irfan</au><au>Şahin, Mehmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>29</volume><issue>3</issue><spage>739</spage><epage>748</epage><pages>739-748</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this paper, we introduced some similarity measures for bipolar neutrosophic sets such as; Dice similarity measure, weighted Dice similarity measure, Hybrid vector similarity measure and weighted Hybrid vector similarity measure. Also we examine the propositions of the similarity measures. Furthermore, a multi-criteria decision-making method for bipolar neutrosophic set is developed based on these given similarity measures. Then, a practical example is shown to verify the feasibility of the new method. Finally, we compare the proposed method with the existing methods in order to demonstrate the practicality and effectiveness of the developed method in this paper.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-016-2479-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5580-7037</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2018-02, Vol.29 (3), p.739-748
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_1993415061
source Springer Link
subjects Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Decision making
Image Processing and Computer Vision
Multiple criteria decision making
Multiple criterion
Original Article
Probability and Statistics in Computer Science
Similarity
Similarity measures
title Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Similarity%20measures%20of%20bipolar%20neutrosophic%20sets%20and%20their%20application%20to%20multiple%20criteria%20decision%20making&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Ulu%C3%A7ay,%20Vakkas&rft.date=2018-02-01&rft.volume=29&rft.issue=3&rft.spage=739&rft.epage=748&rft.pages=739-748&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-016-2479-1&rft_dat=%3Cproquest_cross%3E1993415061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-8b69d317ecacdfd5abfb0dc272cd0a205d4bae947811e7b4a62ffee8fb766fd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1993415061&rft_id=info:pmid/&rfr_iscdi=true