Loading…

Multi-Objective Simulation-Optimization Model for Long-term Reservoir Operation using Piecewise Linear Hedging Rule

An efficiently parameterized and appropriately structured piecewise linear hedging rule is formulated and included within a multi-objective simulation-optimization (S-O) framework that seeks to obtain Pareto-optimal solutions for the long-term hedged operation of a single water supply reservoir. Two...

Full description

Saved in:
Bibliographic Details
Published in:Water resources management 2018-03, Vol.32 (5), p.1901-1911
Main Authors: Srinivasan, K., Kumar, Kranthi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An efficiently parameterized and appropriately structured piecewise linear hedging rule is formulated and included within a multi-objective simulation-optimization (S-O) framework that seeks to obtain Pareto-optimal solutions for the long-term hedged operation of a single water supply reservoir. Two conflicting objectives, namely, “minimize the total shortage ratio” and “minimize the maximum shortage” are considered in the S-O framework, while explicit specification of constraints is avoided in the optimization module. Evolutionary search based non-dominated sorting genetic algorithm is used as the driver, which is linked to the simulation engine that invokes the piecewise linear hedging rule within the S-O framework. Preconditioning of the multi-objective stochastic search of the time-varying piecewise linear hedging model is effected by feeding initial feasible solutions sampled from the Pareto-optimal front of a simple constant hedging parameter model, which has resulted in significant improvement of the Pareto-optimality and the computational efficiency.
ISSN:0920-4741
1573-1650
DOI:10.1007/s11269-018-1911-y