Loading…

Nontraditional constant pressure filtration behavior

Pressure filtration is a common industrial process used for solid–liquid separation and laboratory technique used to measure the compressional rheological properties of suspensions. Traditional approaches to the modeling of constant pressure filtration behavior of particulate systems stipulate quadr...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2005-09, Vol.51 (9), p.2481-2488
Main Authors: Stickland, Anthony D., De Kretser, Ross G., Scales, Peter J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4011-3781e371939b476dfb3513c2af57aef946b9ca4c368e6ce0d760c18f763ef8a43
cites cdi_FETCH-LOGICAL-c4011-3781e371939b476dfb3513c2af57aef946b9ca4c368e6ce0d760c18f763ef8a43
container_end_page 2488
container_issue 9
container_start_page 2481
container_title AIChE journal
container_volume 51
creator Stickland, Anthony D.
De Kretser, Ross G.
Scales, Peter J.
description Pressure filtration is a common industrial process used for solid–liquid separation and laboratory technique used to measure the compressional rheological properties of suspensions. Traditional approaches to the modeling of constant pressure filtration behavior of particulate systems stipulate quadratic behavior of time with filtrate volume. However, this is not necessarily a fundamental attribute of pressure filtration, but rather a result of the assumptions made of the compressibility and permeability of the material. This work solves diffusion‐type constant pressure filtration governing equations using a finite‐difference technique to demonstrate that filtration, under certain circumstances, is expected to show negligible quadratic behavior. Materials that exhibit such behavior have often been classified as nontraditional and methodologies have been developed to interpret such trends. This work illustrates that such behavior is in fact covered by extant filtration models and does not require any extra interpretation of the forces involved. Furthermore, it is shown that traditional or nontraditional behavior is dependent on the initial solids concentration and the applied pressure, such that the filtration of a suspension may show relatively long cake formation times at low initial concentrations or pressures, and relatively short times at high initial concentrations or pressures. © 2005 American Institute of Chemical Engineers AIChE J, 2005
doi_str_mv 10.1002/aic.10501
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199366462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>892250691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4011-3781e371939b476dfb3513c2af57aef946b9ca4c368e6ce0d760c18f763ef8a43</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqUw8A8iJAaGUDt27HisKvpAVRkAMVo3ri1cQlLsFOi_xyUFJqb7-s7R1UHonOBrgnE2AKdjk2NygHokZyLNJc4PUQ9jTNK4IMfoJIRVnDJRZD3EFk3deli61jU1VIlu6tBC3SZrb0LYeJNYV0Vgd05K8wzvrvGn6MhCFczZvvbR4_jmYTRN53eT2Wg4TzXDhKRUFMRQQSSVJRN8aUuaE6ozsLkAYyXjpdTANOWF4drgpeBYk8IKTo0tgNE-uuh8175525jQqlWz8fHNoIiUlHPGswhddZD2TQjeWLX27hX8VhGsdpmomIn6ziSyl3tDCBoq66HWLvwJBCacSRG5Qcd9uMps_zdUw9noxzntFC605vNXAf5FcUFFrp4WE0XF_e10LAol6RcHKH3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199366462</pqid></control><display><type>article</type><title>Nontraditional constant pressure filtration behavior</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Stickland, Anthony D. ; De Kretser, Ross G. ; Scales, Peter J.</creator><creatorcontrib>Stickland, Anthony D. ; De Kretser, Ross G. ; Scales, Peter J.</creatorcontrib><description>Pressure filtration is a common industrial process used for solid–liquid separation and laboratory technique used to measure the compressional rheological properties of suspensions. Traditional approaches to the modeling of constant pressure filtration behavior of particulate systems stipulate quadratic behavior of time with filtrate volume. However, this is not necessarily a fundamental attribute of pressure filtration, but rather a result of the assumptions made of the compressibility and permeability of the material. This work solves diffusion‐type constant pressure filtration governing equations using a finite‐difference technique to demonstrate that filtration, under certain circumstances, is expected to show negligible quadratic behavior. Materials that exhibit such behavior have often been classified as nontraditional and methodologies have been developed to interpret such trends. This work illustrates that such behavior is in fact covered by extant filtration models and does not require any extra interpretation of the forces involved. Furthermore, it is shown that traditional or nontraditional behavior is dependent on the initial solids concentration and the applied pressure, such that the filtration of a suspension may show relatively long cake formation times at low initial concentrations or pressures, and relatively short times at high initial concentrations or pressures. © 2005 American Institute of Chemical Engineers AIChE J, 2005</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.10501</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical engineering ; compressibility ; constant pressure filtration ; Exact sciences and technology ; Filters ; Filtration ; Fluid dynamics ; Liquid-liquid and fluid-solid mechanical separations ; permeability ; solid/liquid separation ; solids diffusivity</subject><ispartof>AIChE journal, 2005-09, Vol.51 (9), p.2481-2488</ispartof><rights>Copyright © 2005 American Institute of Chemical Engineers (AIChE)</rights><rights>2005 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Sep 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4011-3781e371939b476dfb3513c2af57aef946b9ca4c368e6ce0d760c18f763ef8a43</citedby><cites>FETCH-LOGICAL-c4011-3781e371939b476dfb3513c2af57aef946b9ca4c368e6ce0d760c18f763ef8a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17016497$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stickland, Anthony D.</creatorcontrib><creatorcontrib>De Kretser, Ross G.</creatorcontrib><creatorcontrib>Scales, Peter J.</creatorcontrib><title>Nontraditional constant pressure filtration behavior</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Pressure filtration is a common industrial process used for solid–liquid separation and laboratory technique used to measure the compressional rheological properties of suspensions. Traditional approaches to the modeling of constant pressure filtration behavior of particulate systems stipulate quadratic behavior of time with filtrate volume. However, this is not necessarily a fundamental attribute of pressure filtration, but rather a result of the assumptions made of the compressibility and permeability of the material. This work solves diffusion‐type constant pressure filtration governing equations using a finite‐difference technique to demonstrate that filtration, under certain circumstances, is expected to show negligible quadratic behavior. Materials that exhibit such behavior have often been classified as nontraditional and methodologies have been developed to interpret such trends. This work illustrates that such behavior is in fact covered by extant filtration models and does not require any extra interpretation of the forces involved. Furthermore, it is shown that traditional or nontraditional behavior is dependent on the initial solids concentration and the applied pressure, such that the filtration of a suspension may show relatively long cake formation times at low initial concentrations or pressures, and relatively short times at high initial concentrations or pressures. © 2005 American Institute of Chemical Engineers AIChE J, 2005</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>compressibility</subject><subject>constant pressure filtration</subject><subject>Exact sciences and technology</subject><subject>Filters</subject><subject>Filtration</subject><subject>Fluid dynamics</subject><subject>Liquid-liquid and fluid-solid mechanical separations</subject><subject>permeability</subject><subject>solid/liquid separation</subject><subject>solids diffusivity</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EEqUw8A8iJAaGUDt27HisKvpAVRkAMVo3ri1cQlLsFOi_xyUFJqb7-s7R1UHonOBrgnE2AKdjk2NygHokZyLNJc4PUQ9jTNK4IMfoJIRVnDJRZD3EFk3deli61jU1VIlu6tBC3SZrb0LYeJNYV0Vgd05K8wzvrvGn6MhCFczZvvbR4_jmYTRN53eT2Wg4TzXDhKRUFMRQQSSVJRN8aUuaE6ozsLkAYyXjpdTANOWF4drgpeBYk8IKTo0tgNE-uuh8175525jQqlWz8fHNoIiUlHPGswhddZD2TQjeWLX27hX8VhGsdpmomIn6ziSyl3tDCBoq66HWLvwJBCacSRG5Qcd9uMps_zdUw9noxzntFC605vNXAf5FcUFFrp4WE0XF_e10LAol6RcHKH3g</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Stickland, Anthony D.</creator><creator>De Kretser, Ross G.</creator><creator>Scales, Peter J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>200509</creationdate><title>Nontraditional constant pressure filtration behavior</title><author>Stickland, Anthony D. ; De Kretser, Ross G. ; Scales, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4011-3781e371939b476dfb3513c2af57aef946b9ca4c368e6ce0d760c18f763ef8a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>compressibility</topic><topic>constant pressure filtration</topic><topic>Exact sciences and technology</topic><topic>Filters</topic><topic>Filtration</topic><topic>Fluid dynamics</topic><topic>Liquid-liquid and fluid-solid mechanical separations</topic><topic>permeability</topic><topic>solid/liquid separation</topic><topic>solids diffusivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stickland, Anthony D.</creatorcontrib><creatorcontrib>De Kretser, Ross G.</creatorcontrib><creatorcontrib>Scales, Peter J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stickland, Anthony D.</au><au>De Kretser, Ross G.</au><au>Scales, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nontraditional constant pressure filtration behavior</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2005-09</date><risdate>2005</risdate><volume>51</volume><issue>9</issue><spage>2481</spage><epage>2488</epage><pages>2481-2488</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Pressure filtration is a common industrial process used for solid–liquid separation and laboratory technique used to measure the compressional rheological properties of suspensions. Traditional approaches to the modeling of constant pressure filtration behavior of particulate systems stipulate quadratic behavior of time with filtrate volume. However, this is not necessarily a fundamental attribute of pressure filtration, but rather a result of the assumptions made of the compressibility and permeability of the material. This work solves diffusion‐type constant pressure filtration governing equations using a finite‐difference technique to demonstrate that filtration, under certain circumstances, is expected to show negligible quadratic behavior. Materials that exhibit such behavior have often been classified as nontraditional and methodologies have been developed to interpret such trends. This work illustrates that such behavior is in fact covered by extant filtration models and does not require any extra interpretation of the forces involved. Furthermore, it is shown that traditional or nontraditional behavior is dependent on the initial solids concentration and the applied pressure, such that the filtration of a suspension may show relatively long cake formation times at low initial concentrations or pressures, and relatively short times at high initial concentrations or pressures. © 2005 American Institute of Chemical Engineers AIChE J, 2005</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.10501</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2005-09, Vol.51 (9), p.2481-2488
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_199366462
source Wiley-Blackwell Read & Publish Collection
subjects Applied sciences
Chemical engineering
compressibility
constant pressure filtration
Exact sciences and technology
Filters
Filtration
Fluid dynamics
Liquid-liquid and fluid-solid mechanical separations
permeability
solid/liquid separation
solids diffusivity
title Nontraditional constant pressure filtration behavior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nontraditional%20constant%20pressure%20filtration%20behavior&rft.jtitle=AIChE%20journal&rft.au=Stickland,%20Anthony%20D.&rft.date=2005-09&rft.volume=51&rft.issue=9&rft.spage=2481&rft.epage=2488&rft.pages=2481-2488&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.10501&rft_dat=%3Cproquest_cross%3E892250691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4011-3781e371939b476dfb3513c2af57aef946b9ca4c368e6ce0d760c18f763ef8a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=199366462&rft_id=info:pmid/&rfr_iscdi=true