Loading…
Constrained nonlinear MPC using hammerstein and wiener models: PLS framework
Methods of implementing an input‐constrained, nonlinear, model‐predictive controller in latent spaces using partial‐least‐squares (PLS)‐based Hammerstein and Wiener models are discussed. For multiple‐input, multiple‐output (MIMO) systems, the PLS flamework presents a viable alternative for identific...
Saved in:
Published in: | AIChE journal 1998-07, Vol.44 (7), p.1611-1622 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3773-f800941933a52e55acde50c02b6f6ce4c04cb5fa98ba51497c0d87dd2a049eeb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3773-f800941933a52e55acde50c02b6f6ce4c04cb5fa98ba51497c0d87dd2a049eeb3 |
container_end_page | 1622 |
container_issue | 7 |
container_start_page | 1611 |
container_title | AIChE journal |
container_volume | 44 |
creator | Patwardhan, Rohit S. Lakshminarayanan, S. Shah, Sirish L. |
description | Methods of implementing an input‐constrained, nonlinear, model‐predictive controller in latent spaces using partial‐least‐squares (PLS)‐based Hammerstein and Wiener models are discussed. For multiple‐input, multiple‐output (MIMO) systems, the PLS flamework presents a viable alternative for identification and controller synthesis using Hammerstein and Wiener structures. The constraint mappings, which have to be taken into account during controller design in the PLS flamework, are highlighted. PLS‐based Wiener models are well suited for constrained control of nonlinear systems. The use of PLS‐based Hammerstein models for control involves solution of a nonlinear program as a result of the constraint mapping. The proposed approach is demonstrated on a simulated pH‐level control of an acid base neutralization process. |
doi_str_mv | 10.1002/aic.690440713 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199371830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32306133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3773-f800941933a52e55acde50c02b6f6ce4c04cb5fa98ba51497c0d87dd2a049eeb3</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEmU5crcQ15SxHccxN4jYRIEiQBwt13HAkDjFblX49xi1qjhxmkXfvJl5CB0QGBIAeqydGRYS8hwEYRtoQHguMi6Bb6IBAJAsNcg22onxPVVUlHSARlXv4yxo522Nfe_blOiAb8cVnkfnX_Gb7job4sw6j7Wv8cJZbwPu-tq28QSPR4-4Cbqziz587KGtRrfR7q_iLnq-OH-qrrLR_eV1dTrKDBOCZU0JIHMiGdOcWs61qS0HA3RSNIWxuYHcTHijZTnRnORSGKhLUddUQy6tnbBddLjUnYb-c27jTL338-DTSkWkZIKUDBKULSET-hiDbdQ0uE6Hb0VA_fqlkl9q7Vfij1aiOhrdpqe8cXE9RBkHXtKEiSW2cK39_l9TnV5XfxesDnLJza_1pA4fqhBMcPVyd6nG9KE8u7m7VZz9AF39iV0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199371830</pqid></control><display><type>article</type><title>Constrained nonlinear MPC using hammerstein and wiener models: PLS framework</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Patwardhan, Rohit S. ; Lakshminarayanan, S. ; Shah, Sirish L.</creator><creatorcontrib>Patwardhan, Rohit S. ; Lakshminarayanan, S. ; Shah, Sirish L.</creatorcontrib><description>Methods of implementing an input‐constrained, nonlinear, model‐predictive controller in latent spaces using partial‐least‐squares (PLS)‐based Hammerstein and Wiener models are discussed. For multiple‐input, multiple‐output (MIMO) systems, the PLS flamework presents a viable alternative for identification and controller synthesis using Hammerstein and Wiener structures. The constraint mappings, which have to be taken into account during controller design in the PLS flamework, are highlighted. PLS‐based Wiener models are well suited for constrained control of nonlinear systems. The use of PLS‐based Hammerstein models for control involves solution of a nonlinear program as a result of the constraint mapping. The proposed approach is demonstrated on a simulated pH‐level control of an acid base neutralization process.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690440713</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization ; Applied sciences ; Chemical engineering ; Exact sciences and technology</subject><ispartof>AIChE journal, 1998-07, Vol.44 (7), p.1611-1622</ispartof><rights>Copyright © 1998 American Institute of Chemical Engineers (AIChE)</rights><rights>1998 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Jul 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3773-f800941933a52e55acde50c02b6f6ce4c04cb5fa98ba51497c0d87dd2a049eeb3</citedby><cites>FETCH-LOGICAL-c3773-f800941933a52e55acde50c02b6f6ce4c04cb5fa98ba51497c0d87dd2a049eeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2350582$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Patwardhan, Rohit S.</creatorcontrib><creatorcontrib>Lakshminarayanan, S.</creatorcontrib><creatorcontrib>Shah, Sirish L.</creatorcontrib><title>Constrained nonlinear MPC using hammerstein and wiener models: PLS framework</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Methods of implementing an input‐constrained, nonlinear, model‐predictive controller in latent spaces using partial‐least‐squares (PLS)‐based Hammerstein and Wiener models are discussed. For multiple‐input, multiple‐output (MIMO) systems, the PLS flamework presents a viable alternative for identification and controller synthesis using Hammerstein and Wiener structures. The constraint mappings, which have to be taken into account during controller design in the PLS flamework, are highlighted. PLS‐based Wiener models are well suited for constrained control of nonlinear systems. The use of PLS‐based Hammerstein models for control involves solution of a nonlinear program as a result of the constraint mapping. The proposed approach is demonstrated on a simulated pH‐level control of an acid base neutralization process.</description><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAQhS0EEmU5crcQ15SxHccxN4jYRIEiQBwt13HAkDjFblX49xi1qjhxmkXfvJl5CB0QGBIAeqydGRYS8hwEYRtoQHguMi6Bb6IBAJAsNcg22onxPVVUlHSARlXv4yxo522Nfe_blOiAb8cVnkfnX_Gb7job4sw6j7Wv8cJZbwPu-tq28QSPR4-4Cbqziz587KGtRrfR7q_iLnq-OH-qrrLR_eV1dTrKDBOCZU0JIHMiGdOcWs61qS0HA3RSNIWxuYHcTHijZTnRnORSGKhLUddUQy6tnbBddLjUnYb-c27jTL338-DTSkWkZIKUDBKULSET-hiDbdQ0uE6Hb0VA_fqlkl9q7Vfij1aiOhrdpqe8cXE9RBkHXtKEiSW2cK39_l9TnV5XfxesDnLJza_1pA4fqhBMcPVyd6nG9KE8u7m7VZz9AF39iV0</recordid><startdate>199807</startdate><enddate>199807</enddate><creator>Patwardhan, Rohit S.</creator><creator>Lakshminarayanan, S.</creator><creator>Shah, Sirish L.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>199807</creationdate><title>Constrained nonlinear MPC using hammerstein and wiener models: PLS framework</title><author>Patwardhan, Rohit S. ; Lakshminarayanan, S. ; Shah, Sirish L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3773-f800941933a52e55acde50c02b6f6ce4c04cb5fa98ba51497c0d87dd2a049eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patwardhan, Rohit S.</creatorcontrib><creatorcontrib>Lakshminarayanan, S.</creatorcontrib><creatorcontrib>Shah, Sirish L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patwardhan, Rohit S.</au><au>Lakshminarayanan, S.</au><au>Shah, Sirish L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained nonlinear MPC using hammerstein and wiener models: PLS framework</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1998-07</date><risdate>1998</risdate><volume>44</volume><issue>7</issue><spage>1611</spage><epage>1622</epage><pages>1611-1622</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Methods of implementing an input‐constrained, nonlinear, model‐predictive controller in latent spaces using partial‐least‐squares (PLS)‐based Hammerstein and Wiener models are discussed. For multiple‐input, multiple‐output (MIMO) systems, the PLS flamework presents a viable alternative for identification and controller synthesis using Hammerstein and Wiener structures. The constraint mappings, which have to be taken into account during controller design in the PLS flamework, are highlighted. PLS‐based Wiener models are well suited for constrained control of nonlinear systems. The use of PLS‐based Hammerstein models for control involves solution of a nonlinear program as a result of the constraint mapping. The proposed approach is demonstrated on a simulated pH‐level control of an acid base neutralization process.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.690440713</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 1998-07, Vol.44 (7), p.1611-1622 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_199371830 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization Applied sciences Chemical engineering Exact sciences and technology |
title | Constrained nonlinear MPC using hammerstein and wiener models: PLS framework |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20nonlinear%20MPC%20using%20hammerstein%20and%20wiener%20models:%20PLS%20framework&rft.jtitle=AIChE%20journal&rft.au=Patwardhan,%20Rohit%20S.&rft.date=1998-07&rft.volume=44&rft.issue=7&rft.spage=1611&rft.epage=1622&rft.pages=1611-1622&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690440713&rft_dat=%3Cproquest_cross%3E32306133%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3773-f800941933a52e55acde50c02b6f6ce4c04cb5fa98ba51497c0d87dd2a049eeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=199371830&rft_id=info:pmid/&rfr_iscdi=true |