Loading…
Decomposition techniques for the solution of large-scale scheduling problems
With increased product specialization within the chemical‐processing industries, the ability to obtain production schedules for complex facilities is at a premium. This article discusses ways of quickly obtaining solutions for industrially relevant, large‐scale scheduling problems. A number of time‐...
Saved in:
Published in: | AIChE journal 1996-12, Vol.42 (12), p.3373-3387 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4139-18a06084c425a401d1293667bd55bc97abb1e390ecc7dc22011b0740fa97f0aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4139-18a06084c425a401d1293667bd55bc97abb1e390ecc7dc22011b0740fa97f0aa3 |
container_end_page | 3387 |
container_issue | 12 |
container_start_page | 3373 |
container_title | AIChE journal |
container_volume | 42 |
creator | Bassett, Matthew H. Pekny, Joseph F. Reklaitis, Gintaras V. |
description | With increased product specialization within the chemical‐processing industries, the ability to obtain production schedules for complex facilities is at a premium. This article discusses ways of quickly obtaining solutions for industrially relevant, large‐scale scheduling problems. A number of time‐based decomposition approaches are presented along with their associated strengths and weaknesses. It is shown that the most promising of the approaches utilizes a reverse rolling window in conjunction with a disaggregation heuristic. In this method, only a small subsection of the horizon is dealt with at a time, thus reducing the combinatorial complexity of the problem. Resource‐ and task‐unit‐based decompositions are also discussed as possible approaches to reduce the problem to manageable proportions. A number of examples are presented throughout to clarify the discussion. |
doi_str_mv | 10.1002/aic.690421209 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199374974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11262158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-18a06084c425a401d1293667bd55bc97abb1e390ecc7dc22011b0740fa97f0aa3</originalsourceid><addsrcrecordid>eNp9kM1PAjEQxRujiYgevW-M18Vpt91ujwQFSTZ68ePYdEsXissW2yXKf28RQjx5msz0N-9NH0LXGAYYgNwpqwe5AEowAXGCephRnjIB7BT1AACncYDP0UUIy9gRXpAeKu-Ndqu1C7azrk06oxet_dyYkNTOJ93CJME1m983VyeN8nOTBq2aONcLM9s0tp0na--qxqzCJTqrVRPM1aH20ev44WX0mJbPk-loWKaa4kykuFCQQ0E1JUxRwDNMRJbnvJoxVmnBVVVhkwkwWvOZJgQwroBTqJXgNSiV9dHNXjca727t5NJtfBstJRYi41RwGqF0D2nvQvCmlmtvV8pvJQa5y0vGvOQxr8jfHkTV7oO1V6224bhEGCFM4IjxPfZlG7P9X1MOp6O_BoeDbOjM93FT-Q-Z84wz-f40keMyJ3kxfpM0-wHm-olW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199374974</pqid></control><display><type>article</type><title>Decomposition techniques for the solution of large-scale scheduling problems</title><source>Wiley Online Library Backfiles</source><creator>Bassett, Matthew H. ; Pekny, Joseph F. ; Reklaitis, Gintaras V.</creator><creatorcontrib>Bassett, Matthew H. ; Pekny, Joseph F. ; Reklaitis, Gintaras V.</creatorcontrib><description>With increased product specialization within the chemical‐processing industries, the ability to obtain production schedules for complex facilities is at a premium. This article discusses ways of quickly obtaining solutions for industrially relevant, large‐scale scheduling problems. A number of time‐based decomposition approaches are presented along with their associated strengths and weaknesses. It is shown that the most promising of the approaches utilizes a reverse rolling window in conjunction with a disaggregation heuristic. In this method, only a small subsection of the horizon is dealt with at a time, thus reducing the combinatorial complexity of the problem. Resource‐ and task‐unit‐based decompositions are also discussed as possible approaches to reduce the problem to manageable proportions. A number of examples are presented throughout to clarify the discussion.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690421209</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization ; Applied sciences ; Chemical engineering ; Exact sciences and technology</subject><ispartof>AIChE journal, 1996-12, Vol.42 (12), p.3373-3387</ispartof><rights>Copyright © 1996 American Institute of Chemical Engineers</rights><rights>1997 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Dec 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-18a06084c425a401d1293667bd55bc97abb1e390ecc7dc22011b0740fa97f0aa3</citedby><cites>FETCH-LOGICAL-c4139-18a06084c425a401d1293667bd55bc97abb1e390ecc7dc22011b0740fa97f0aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690421209$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690421209$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27924,27925,46049,46473</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2522591$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bassett, Matthew H.</creatorcontrib><creatorcontrib>Pekny, Joseph F.</creatorcontrib><creatorcontrib>Reklaitis, Gintaras V.</creatorcontrib><title>Decomposition techniques for the solution of large-scale scheduling problems</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>With increased product specialization within the chemical‐processing industries, the ability to obtain production schedules for complex facilities is at a premium. This article discusses ways of quickly obtaining solutions for industrially relevant, large‐scale scheduling problems. A number of time‐based decomposition approaches are presented along with their associated strengths and weaknesses. It is shown that the most promising of the approaches utilizes a reverse rolling window in conjunction with a disaggregation heuristic. In this method, only a small subsection of the horizon is dealt with at a time, thus reducing the combinatorial complexity of the problem. Resource‐ and task‐unit‐based decompositions are also discussed as possible approaches to reduce the problem to manageable proportions. A number of examples are presented throughout to clarify the discussion.</description><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kM1PAjEQxRujiYgevW-M18Vpt91ujwQFSTZ68ePYdEsXissW2yXKf28RQjx5msz0N-9NH0LXGAYYgNwpqwe5AEowAXGCephRnjIB7BT1AACncYDP0UUIy9gRXpAeKu-Ndqu1C7azrk06oxet_dyYkNTOJ93CJME1m983VyeN8nOTBq2aONcLM9s0tp0na--qxqzCJTqrVRPM1aH20ev44WX0mJbPk-loWKaa4kykuFCQQ0E1JUxRwDNMRJbnvJoxVmnBVVVhkwkwWvOZJgQwroBTqJXgNSiV9dHNXjca727t5NJtfBstJRYi41RwGqF0D2nvQvCmlmtvV8pvJQa5y0vGvOQxr8jfHkTV7oO1V6224bhEGCFM4IjxPfZlG7P9X1MOp6O_BoeDbOjM93FT-Q-Z84wz-f40keMyJ3kxfpM0-wHm-olW</recordid><startdate>199612</startdate><enddate>199612</enddate><creator>Bassett, Matthew H.</creator><creator>Pekny, Joseph F.</creator><creator>Reklaitis, Gintaras V.</creator><general>American Institute of Chemical Engineers</general><general>Wiley Subscription Services</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>199612</creationdate><title>Decomposition techniques for the solution of large-scale scheduling problems</title><author>Bassett, Matthew H. ; Pekny, Joseph F. ; Reklaitis, Gintaras V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-18a06084c425a401d1293667bd55bc97abb1e390ecc7dc22011b0740fa97f0aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bassett, Matthew H.</creatorcontrib><creatorcontrib>Pekny, Joseph F.</creatorcontrib><creatorcontrib>Reklaitis, Gintaras V.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bassett, Matthew H.</au><au>Pekny, Joseph F.</au><au>Reklaitis, Gintaras V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposition techniques for the solution of large-scale scheduling problems</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1996-12</date><risdate>1996</risdate><volume>42</volume><issue>12</issue><spage>3373</spage><epage>3387</epage><pages>3373-3387</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>With increased product specialization within the chemical‐processing industries, the ability to obtain production schedules for complex facilities is at a premium. This article discusses ways of quickly obtaining solutions for industrially relevant, large‐scale scheduling problems. A number of time‐based decomposition approaches are presented along with their associated strengths and weaknesses. It is shown that the most promising of the approaches utilizes a reverse rolling window in conjunction with a disaggregation heuristic. In this method, only a small subsection of the horizon is dealt with at a time, thus reducing the combinatorial complexity of the problem. Resource‐ and task‐unit‐based decompositions are also discussed as possible approaches to reduce the problem to manageable proportions. A number of examples are presented throughout to clarify the discussion.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.690421209</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 1996-12, Vol.42 (12), p.3373-3387 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_199374974 |
source | Wiley Online Library Backfiles |
subjects | Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization Applied sciences Chemical engineering Exact sciences and technology |
title | Decomposition techniques for the solution of large-scale scheduling problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposition%20techniques%20for%20the%20solution%20of%20large-scale%20scheduling%20problems&rft.jtitle=AIChE%20journal&rft.au=Bassett,%20Matthew%20H.&rft.date=1996-12&rft.volume=42&rft.issue=12&rft.spage=3373&rft.epage=3387&rft.pages=3373-3387&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690421209&rft_dat=%3Cproquest_cross%3E11262158%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4139-18a06084c425a401d1293667bd55bc97abb1e390ecc7dc22011b0740fa97f0aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=199374974&rft_id=info:pmid/&rfr_iscdi=true |