Loading…

Pt Nanoparticles Sensitized Ordered Mesoporous WO3 Semiconductor: Gas Sensing Performance and Mechanism Study

In this study, a straightforward coassembly strategy is demonstrated to synthesize Pt sensitized mesoporous WO3 with crystalline framework through the simultaneous coassembly of amphiphilic poly(ethylene oxide)‐b‐polystyrene, hydrophobic platinum precursors, and hydrophilic tungsten precursors. The...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2018-02, Vol.28 (6), p.n/a
Main Authors: Ma, Junhao, Ren, Yuan, Zhou, Xinran, Liu, Liangliang, Zhu, Yongheng, Cheng, Xiaowei, Xu, Pengcheng, Li, Xinxin, Deng, Yonghui, Zhao, Dongyuan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a straightforward coassembly strategy is demonstrated to synthesize Pt sensitized mesoporous WO3 with crystalline framework through the simultaneous coassembly of amphiphilic poly(ethylene oxide)‐b‐polystyrene, hydrophobic platinum precursors, and hydrophilic tungsten precursors. The obtained WO3/Pt nanocomposites possess large pore size (≈13 nm), high surface area (128 m2 g−1), large pore volume (0.32 cm3 g−1), and Pt nanoparticles (≈4 nm) in situ homogeneously distributed in mesopores, and they exhibit excellent catalytic sensing response to CO of low concentration at low working temperature with good sensitivity, ultrashort response‐recovery time (16 s/1 s), and high selectivity. In‐depth study reveals that besides the contribution from the fast diffusion of gaseous molecules and rich interfaces in mesoporous WO3/Pt nanocomposites, the partially oxidized Pt nanoparticles that chemically and electronically sensitize the crystalline WO3 matrix, dramatically enhance the sensitivity and selectivity. Ordered mesoporous crystalline WO3/Pt nanomaterials are synthesized through a facile straightforward coassembly strategy. Owning to combined merits of the high porosity of mesoporous WO3 and the chemical and electronic sensitization effect of Pt NPs dispersed in mesopores, the nanocomposites exhibit superior performance in carbon monoxide sensing at low working temperature.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201705268