Loading…

Predicting earthquake-induced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: a multi-dataset study

Assessment of the earthquake-induced liquefaction potential is a critical concern in design processes of construction projects. This study proposes a novel soft computing model with a hierarchical structure for evaluating earthquake-induced soil liquefaction. The new approach, named KFDA-LSSVM, comb...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of engineering geology and the environment 2018-02, Vol.77 (1), p.191-204
Main Authors: Hoang, Nhat-Duc, Bui, Dieu Tien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Assessment of the earthquake-induced liquefaction potential is a critical concern in design processes of construction projects. This study proposes a novel soft computing model with a hierarchical structure for evaluating earthquake-induced soil liquefaction. The new approach, named KFDA-LSSVM, combines kernel Fisher discriminant analysis (KFDA) with a least squares support vector machine (LSSVM). Based on the original data set, KFDA is used as a first-level analysis to construct an additional feature that best represents the data structure with consideration of different class labels. In the next level of analysis, based on such additional features and the original features, LSSVM generalizes a classification boundary that separates the learning space into two decision domains: “liquefaction” and “non-liquefaction.” Three data sets of liquefaction records have been used to train and verify the proposed method. The model performance is reliably assessed via a repeated sub-sampling process. Experimental results supported by the Wilcoxon signed-rank test demonstrate significant improvements of the hybrid framework over other benchmark approaches.
ISSN:1435-9529
1435-9537
DOI:10.1007/s10064-016-0924-0