Loading…

MoVES: A framework for parallel and distributed simulation of wireless vehicular ad hoc networks

In this paper, we illustrate a Mobile Wireless Vehicular Environment Simulation (MoVES) framework for the parallel and distributed simulation of vehicular wireless ad hoc networks (VANETs). The proposed framework supports extensible, module-based and layered modeling, and scalable, accurate and effi...

Full description

Saved in:
Bibliographic Details
Published in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2008-01, Vol.52 (1), p.155-179
Main Authors: Bononi, Luciano, Di Felice, Marco, D’Angelo, Gabriele, Bracuto, Michele, Donatiello, Lorenzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we illustrate a Mobile Wireless Vehicular Environment Simulation (MoVES) framework for the parallel and distributed simulation of vehicular wireless ad hoc networks (VANETs). The proposed framework supports extensible, module-based and layered modeling, and scalable, accurate and efficient simulation of vehicular scenarios integrated with wireless communication and mobile services/applications. The vehicular layer includes models for vehicles, synthetic and trace-driven mobility, driver behavior, GPS-based street maps, intersection policies and traffic lights. The wireless communication layer currently includes models for physical propagation, and a network protocol stack including IEEE 802.11 Medium Access Control, up to the Application layer. MoVES provides a platform for microscopic modeling and simulation-based analysis of wireless vehicular scenarios and communication-based services and applications, like Intelligent Transportation Systems, communication-based monitoring/control and info-mobility services. The framework includes design solutions for scalable, accurate and efficient parallel and distributed simulation of complex, vehicular communication scenarios executed over cost-effective, commercial-off-the-shelf (COTS) simulation architectures. Dynamic model partition and adaptation-based load balancing solutions have been designed by exploiting common assumptions and model characteristics, in a user-transparent way. Test-bed performance evaluation for realistic scenarios has shown the effectiveness of MoVES in terms of simulation efficiency, scalability, adaptation and simulation accuracy.
ISSN:1389-1286
1872-7069
DOI:10.1016/j.comnet.2007.09.015