Loading…
MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1
Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress. We have recently demonstrated that mice carrying a genetic deletion of all miR-34 isoforms (triple knockout, TKO) l...
Saved in:
Published in: | Molecular neurobiology 2018-09, Vol.55 (9), p.7401-7412 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-4479f097ce4895b1d8738b6cc0c7dca74a1f4a1d2e1e989ac62272b67d1b0c5a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-4479f097ce4895b1d8738b6cc0c7dca74a1f4a1d2e1e989ac62272b67d1b0c5a3 |
container_end_page | 7412 |
container_issue | 9 |
container_start_page | 7401 |
container_title | Molecular neurobiology |
container_volume | 55 |
creator | Andolina, Diego Di Segni, Matteo Accoto, Alessandra Lo Iacono, Luisa Borreca, Antonella Ielpo, Donald Berretta, Nicola Perlas, Emerald Puglisi-Allegra, Stefano Ventura, Rossella |
description | Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress. We have recently demonstrated that mice carrying a genetic deletion of all miR-34 isoforms (triple knockout, TKO) lack the stress-induced serotonin (5-HT) and GABA release in the medial prefrontal cortex (mpFC) and basolateral amygdala (BLA), respectively. Here, we evaluated if the absence of miR-34 was also able to modify the stress-coping strategy in the forced swimming test. We found that the blunted neurochemical response to stress was associated with lower levels of immobility (index of active coping behavior) in TKO compared to WT mice. Interestingly, among the brain regions mostly involved in the stress-related behaviors, the miR-34 displayed the strongest expression in the dorsal raphe nuclei (DRN) of wild-type (WT) mice. In the DRN, the corticotropin-releasing factor receptors (CRFR) 1 and 2, contribute to determine the stress-coping style and the CRFR1 is a target of miR-34. Thus, we hypothesized that the miR-34-dependent modulation of CRFR1 expression may be involved in the DRN regulation of stress-coping strategies. In line with this hypothesis, we found increased CRFR1 levels in the DNR of TKO compared to WT mice. Moreover, infusion of CRFR1 antagonist in the DRN of TKO mice reverted their behavioral and neurochemical phenotype. We propose that miR-34 modulate the mpFC 5-HT/BLA GABA response to stress acting on CRFR1 in the DRN and that this mechanism could contribute to determine individual stress-coping strategy. |
doi_str_mv | 10.1007/s12035-018-0925-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1999031053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999031053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4479f097ce4895b1d8738b6cc0c7dca74a1f4a1d2e1e989ac62272b67d1b0c5a3</originalsourceid><addsrcrecordid>eNp1kc1u2zAQhImiQeOkfYBeCgI9M-ZSkikeFaP5AZwfOOmZoKiVrMAWXZIq4DxRHjM0nBa55EAsAc7MB-4Q8h34GXAupwEEzwrGoWRciYI9fyITKArFAErxmUx4qTImZ3l5TE5CeOJcCODyCzkWKgeZSzkhLze99W55W7Esp3M3RN_XY8RAo6NxhfQhegyBeVybiA09x5X52ztPzdDQqm3RxkALdvVI7z22PvnNenpZnVe02uy6xqyNpw-7EHGT0rwbuxVdYjemsN4N1LUJ6WNvXfRu2w97DJrQDx29MDYmzBItbvcX-EqOWrMO-O1tnpLfF78e51dscXd5Pa8WzGZSRJbnUrVcSYt5qYoamlJmZT2zllvZWCNzA206jUBAVSpjZ0JIUc9kAzW3hclOyc9D7ta7PyOGqJ_c6IeE1KCU4hnwIksqOKjS8kJIX9db32-M32nget-NPnSjUzd6341-Tp4fb8ljvcHmv-NfGUkgDoKQnoYO_Tv0h6mvme6b4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999031053</pqid></control><display><type>article</type><title>MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Andolina, Diego ; Di Segni, Matteo ; Accoto, Alessandra ; Lo Iacono, Luisa ; Borreca, Antonella ; Ielpo, Donald ; Berretta, Nicola ; Perlas, Emerald ; Puglisi-Allegra, Stefano ; Ventura, Rossella</creator><creatorcontrib>Andolina, Diego ; Di Segni, Matteo ; Accoto, Alessandra ; Lo Iacono, Luisa ; Borreca, Antonella ; Ielpo, Donald ; Berretta, Nicola ; Perlas, Emerald ; Puglisi-Allegra, Stefano ; Ventura, Rossella</creatorcontrib><description>Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress. We have recently demonstrated that mice carrying a genetic deletion of all miR-34 isoforms (triple knockout, TKO) lack the stress-induced serotonin (5-HT) and GABA release in the medial prefrontal cortex (mpFC) and basolateral amygdala (BLA), respectively. Here, we evaluated if the absence of miR-34 was also able to modify the stress-coping strategy in the forced swimming test. We found that the blunted neurochemical response to stress was associated with lower levels of immobility (index of active coping behavior) in TKO compared to WT mice. Interestingly, among the brain regions mostly involved in the stress-related behaviors, the miR-34 displayed the strongest expression in the dorsal raphe nuclei (DRN) of wild-type (WT) mice. In the DRN, the corticotropin-releasing factor receptors (CRFR) 1 and 2, contribute to determine the stress-coping style and the CRFR1 is a target of miR-34. Thus, we hypothesized that the miR-34-dependent modulation of CRFR1 expression may be involved in the DRN regulation of stress-coping strategies. In line with this hypothesis, we found increased CRFR1 levels in the DNR of TKO compared to WT mice. Moreover, infusion of CRFR1 antagonist in the DRN of TKO mice reverted their behavioral and neurochemical phenotype. We propose that miR-34 modulate the mpFC 5-HT/BLA GABA response to stress acting on CRFR1 in the DRN and that this mechanism could contribute to determine individual stress-coping strategy.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-018-0925-z</identifier><identifier>PMID: 29417477</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acenaphthenes - pharmacology ; Amygdala ; Amygdala - drug effects ; Amygdala - metabolism ; Animal behavior ; Animals ; Behavior, Animal - drug effects ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Coping ; Coping behavior ; Corticotropin-releasing hormone ; Corticotropin-Releasing Hormone - pharmacology ; Dorsal Raphe Nucleus - drug effects ; Dorsal Raphe Nucleus - metabolism ; gamma-Aminobutyric Acid - metabolism ; Gene Deletion ; Immobilization ; Isoforms ; Male ; Mice ; Mice, Knockout ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Motor Activity - drug effects ; Neurobiology ; Neurology ; Neurons ; Neurosciences ; Neurotransmitters ; Phenotypes ; Prefrontal cortex ; Prefrontal Cortex - metabolism ; Raphe nuclei ; Receptors, Corticotropin-Releasing Hormone - metabolism ; Rodents ; Serotonin ; Serotonin - metabolism ; Stress ; Stress, Psychological - genetics ; Swimming</subject><ispartof>Molecular neurobiology, 2018-09, Vol.55 (9), p.7401-7412</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Molecular Neurobiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4479f097ce4895b1d8738b6cc0c7dca74a1f4a1d2e1e989ac62272b67d1b0c5a3</citedby><cites>FETCH-LOGICAL-c372t-4479f097ce4895b1d8738b6cc0c7dca74a1f4a1d2e1e989ac62272b67d1b0c5a3</cites><orcidid>0000-0002-9143-858X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29417477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andolina, Diego</creatorcontrib><creatorcontrib>Di Segni, Matteo</creatorcontrib><creatorcontrib>Accoto, Alessandra</creatorcontrib><creatorcontrib>Lo Iacono, Luisa</creatorcontrib><creatorcontrib>Borreca, Antonella</creatorcontrib><creatorcontrib>Ielpo, Donald</creatorcontrib><creatorcontrib>Berretta, Nicola</creatorcontrib><creatorcontrib>Perlas, Emerald</creatorcontrib><creatorcontrib>Puglisi-Allegra, Stefano</creatorcontrib><creatorcontrib>Ventura, Rossella</creatorcontrib><title>MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress. We have recently demonstrated that mice carrying a genetic deletion of all miR-34 isoforms (triple knockout, TKO) lack the stress-induced serotonin (5-HT) and GABA release in the medial prefrontal cortex (mpFC) and basolateral amygdala (BLA), respectively. Here, we evaluated if the absence of miR-34 was also able to modify the stress-coping strategy in the forced swimming test. We found that the blunted neurochemical response to stress was associated with lower levels of immobility (index of active coping behavior) in TKO compared to WT mice. Interestingly, among the brain regions mostly involved in the stress-related behaviors, the miR-34 displayed the strongest expression in the dorsal raphe nuclei (DRN) of wild-type (WT) mice. In the DRN, the corticotropin-releasing factor receptors (CRFR) 1 and 2, contribute to determine the stress-coping style and the CRFR1 is a target of miR-34. Thus, we hypothesized that the miR-34-dependent modulation of CRFR1 expression may be involved in the DRN regulation of stress-coping strategies. In line with this hypothesis, we found increased CRFR1 levels in the DNR of TKO compared to WT mice. Moreover, infusion of CRFR1 antagonist in the DRN of TKO mice reverted their behavioral and neurochemical phenotype. We propose that miR-34 modulate the mpFC 5-HT/BLA GABA response to stress acting on CRFR1 in the DRN and that this mechanism could contribute to determine individual stress-coping strategy.</description><subject>Acenaphthenes - pharmacology</subject><subject>Amygdala</subject><subject>Amygdala - drug effects</subject><subject>Amygdala - metabolism</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Behavior, Animal - drug effects</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Coping</subject><subject>Coping behavior</subject><subject>Corticotropin-releasing hormone</subject><subject>Corticotropin-Releasing Hormone - pharmacology</subject><subject>Dorsal Raphe Nucleus - drug effects</subject><subject>Dorsal Raphe Nucleus - metabolism</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Gene Deletion</subject><subject>Immobilization</subject><subject>Isoforms</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Motor Activity - drug effects</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Neurotransmitters</subject><subject>Phenotypes</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Raphe nuclei</subject><subject>Receptors, Corticotropin-Releasing Hormone - metabolism</subject><subject>Rodents</subject><subject>Serotonin</subject><subject>Serotonin - metabolism</subject><subject>Stress</subject><subject>Stress, Psychological - genetics</subject><subject>Swimming</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u2zAQhImiQeOkfYBeCgI9M-ZSkikeFaP5AZwfOOmZoKiVrMAWXZIq4DxRHjM0nBa55EAsAc7MB-4Q8h34GXAupwEEzwrGoWRciYI9fyITKArFAErxmUx4qTImZ3l5TE5CeOJcCODyCzkWKgeZSzkhLze99W55W7Esp3M3RN_XY8RAo6NxhfQhegyBeVybiA09x5X52ztPzdDQqm3RxkALdvVI7z22PvnNenpZnVe02uy6xqyNpw-7EHGT0rwbuxVdYjemsN4N1LUJ6WNvXfRu2w97DJrQDx29MDYmzBItbvcX-EqOWrMO-O1tnpLfF78e51dscXd5Pa8WzGZSRJbnUrVcSYt5qYoamlJmZT2zllvZWCNzA206jUBAVSpjZ0JIUc9kAzW3hclOyc9D7ta7PyOGqJ_c6IeE1KCU4hnwIksqOKjS8kJIX9db32-M32nget-NPnSjUzd6341-Tp4fb8ljvcHmv-NfGUkgDoKQnoYO_Tv0h6mvme6b4A</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Andolina, Diego</creator><creator>Di Segni, Matteo</creator><creator>Accoto, Alessandra</creator><creator>Lo Iacono, Luisa</creator><creator>Borreca, Antonella</creator><creator>Ielpo, Donald</creator><creator>Berretta, Nicola</creator><creator>Perlas, Emerald</creator><creator>Puglisi-Allegra, Stefano</creator><creator>Ventura, Rossella</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9143-858X</orcidid></search><sort><creationdate>20180901</creationdate><title>MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1</title><author>Andolina, Diego ; Di Segni, Matteo ; Accoto, Alessandra ; Lo Iacono, Luisa ; Borreca, Antonella ; Ielpo, Donald ; Berretta, Nicola ; Perlas, Emerald ; Puglisi-Allegra, Stefano ; Ventura, Rossella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4479f097ce4895b1d8738b6cc0c7dca74a1f4a1d2e1e989ac62272b67d1b0c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acenaphthenes - pharmacology</topic><topic>Amygdala</topic><topic>Amygdala - drug effects</topic><topic>Amygdala - metabolism</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Behavior, Animal - drug effects</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Coping</topic><topic>Coping behavior</topic><topic>Corticotropin-releasing hormone</topic><topic>Corticotropin-Releasing Hormone - pharmacology</topic><topic>Dorsal Raphe Nucleus - drug effects</topic><topic>Dorsal Raphe Nucleus - metabolism</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Gene Deletion</topic><topic>Immobilization</topic><topic>Isoforms</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Motor Activity - drug effects</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Neurotransmitters</topic><topic>Phenotypes</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Raphe nuclei</topic><topic>Receptors, Corticotropin-Releasing Hormone - metabolism</topic><topic>Rodents</topic><topic>Serotonin</topic><topic>Serotonin - metabolism</topic><topic>Stress</topic><topic>Stress, Psychological - genetics</topic><topic>Swimming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andolina, Diego</creatorcontrib><creatorcontrib>Di Segni, Matteo</creatorcontrib><creatorcontrib>Accoto, Alessandra</creatorcontrib><creatorcontrib>Lo Iacono, Luisa</creatorcontrib><creatorcontrib>Borreca, Antonella</creatorcontrib><creatorcontrib>Ielpo, Donald</creatorcontrib><creatorcontrib>Berretta, Nicola</creatorcontrib><creatorcontrib>Perlas, Emerald</creatorcontrib><creatorcontrib>Puglisi-Allegra, Stefano</creatorcontrib><creatorcontrib>Ventura, Rossella</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andolina, Diego</au><au>Di Segni, Matteo</au><au>Accoto, Alessandra</au><au>Lo Iacono, Luisa</au><au>Borreca, Antonella</au><au>Ielpo, Donald</au><au>Berretta, Nicola</au><au>Perlas, Emerald</au><au>Puglisi-Allegra, Stefano</au><au>Ventura, Rossella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>55</volume><issue>9</issue><spage>7401</spage><epage>7412</epage><pages>7401-7412</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress. We have recently demonstrated that mice carrying a genetic deletion of all miR-34 isoforms (triple knockout, TKO) lack the stress-induced serotonin (5-HT) and GABA release in the medial prefrontal cortex (mpFC) and basolateral amygdala (BLA), respectively. Here, we evaluated if the absence of miR-34 was also able to modify the stress-coping strategy in the forced swimming test. We found that the blunted neurochemical response to stress was associated with lower levels of immobility (index of active coping behavior) in TKO compared to WT mice. Interestingly, among the brain regions mostly involved in the stress-related behaviors, the miR-34 displayed the strongest expression in the dorsal raphe nuclei (DRN) of wild-type (WT) mice. In the DRN, the corticotropin-releasing factor receptors (CRFR) 1 and 2, contribute to determine the stress-coping style and the CRFR1 is a target of miR-34. Thus, we hypothesized that the miR-34-dependent modulation of CRFR1 expression may be involved in the DRN regulation of stress-coping strategies. In line with this hypothesis, we found increased CRFR1 levels in the DNR of TKO compared to WT mice. Moreover, infusion of CRFR1 antagonist in the DRN of TKO mice reverted their behavioral and neurochemical phenotype. We propose that miR-34 modulate the mpFC 5-HT/BLA GABA response to stress acting on CRFR1 in the DRN and that this mechanism could contribute to determine individual stress-coping strategy.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29417477</pmid><doi>10.1007/s12035-018-0925-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9143-858X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-7648 |
ispartof | Molecular neurobiology, 2018-09, Vol.55 (9), p.7401-7412 |
issn | 0893-7648 1559-1182 |
language | eng |
recordid | cdi_proquest_journals_1999031053 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Acenaphthenes - pharmacology Amygdala Amygdala - drug effects Amygdala - metabolism Animal behavior Animals Behavior, Animal - drug effects Biomedical and Life Sciences Biomedicine Cell Biology Coping Coping behavior Corticotropin-releasing hormone Corticotropin-Releasing Hormone - pharmacology Dorsal Raphe Nucleus - drug effects Dorsal Raphe Nucleus - metabolism gamma-Aminobutyric Acid - metabolism Gene Deletion Immobilization Isoforms Male Mice Mice, Knockout MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism miRNA Motor Activity - drug effects Neurobiology Neurology Neurons Neurosciences Neurotransmitters Phenotypes Prefrontal cortex Prefrontal Cortex - metabolism Raphe nuclei Receptors, Corticotropin-Releasing Hormone - metabolism Rodents Serotonin Serotonin - metabolism Stress Stress, Psychological - genetics Swimming |
title | MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA-34%20Contributes%20to%20the%20Stress-related%20Behavior%20and%20Affects%205-HT%20Prefrontal/GABA%20Amygdalar%20System%20through%20Regulation%20of%20Corticotropin-releasing%20Factor%20Receptor%201&rft.jtitle=Molecular%20neurobiology&rft.au=Andolina,%20Diego&rft.date=2018-09-01&rft.volume=55&rft.issue=9&rft.spage=7401&rft.epage=7412&rft.pages=7401-7412&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-018-0925-z&rft_dat=%3Cproquest_cross%3E1999031053%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-4479f097ce4895b1d8738b6cc0c7dca74a1f4a1d2e1e989ac62272b67d1b0c5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1999031053&rft_id=info:pmid/29417477&rfr_iscdi=true |