Loading…

MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1

Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress. We have recently demonstrated that mice carrying a genetic deletion of all miR-34 isoforms (triple knockout, TKO) l...

Full description

Saved in:
Bibliographic Details
Published in:Molecular neurobiology 2018-09, Vol.55 (9), p.7401-7412
Main Authors: Andolina, Diego, Di Segni, Matteo, Accoto, Alessandra, Lo Iacono, Luisa, Borreca, Antonella, Ielpo, Donald, Berretta, Nicola, Perlas, Emerald, Puglisi-Allegra, Stefano, Ventura, Rossella
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-4479f097ce4895b1d8738b6cc0c7dca74a1f4a1d2e1e989ac62272b67d1b0c5a3
cites cdi_FETCH-LOGICAL-c372t-4479f097ce4895b1d8738b6cc0c7dca74a1f4a1d2e1e989ac62272b67d1b0c5a3
container_end_page 7412
container_issue 9
container_start_page 7401
container_title Molecular neurobiology
container_volume 55
creator Andolina, Diego
Di Segni, Matteo
Accoto, Alessandra
Lo Iacono, Luisa
Borreca, Antonella
Ielpo, Donald
Berretta, Nicola
Perlas, Emerald
Puglisi-Allegra, Stefano
Ventura, Rossella
description Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress. We have recently demonstrated that mice carrying a genetic deletion of all miR-34 isoforms (triple knockout, TKO) lack the stress-induced serotonin (5-HT) and GABA release in the medial prefrontal cortex (mpFC) and basolateral amygdala (BLA), respectively. Here, we evaluated if the absence of miR-34 was also able to modify the stress-coping strategy in the forced swimming test. We found that the blunted neurochemical response to stress was associated with lower levels of immobility (index of active coping behavior) in TKO compared to WT mice. Interestingly, among the brain regions mostly involved in the stress-related behaviors, the miR-34 displayed the strongest expression in the dorsal raphe nuclei (DRN) of wild-type (WT) mice. In the DRN, the corticotropin-releasing factor receptors (CRFR) 1 and 2, contribute to determine the stress-coping style and the CRFR1 is a target of miR-34. Thus, we hypothesized that the miR-34-dependent modulation of CRFR1 expression may be involved in the DRN regulation of stress-coping strategies. In line with this hypothesis, we found increased CRFR1 levels in the DNR of TKO compared to WT mice. Moreover, infusion of CRFR1 antagonist in the DRN of TKO mice reverted their behavioral and neurochemical phenotype. We propose that miR-34 modulate the mpFC 5-HT/BLA GABA response to stress acting on CRFR1 in the DRN and that this mechanism could contribute to determine individual stress-coping strategy.
doi_str_mv 10.1007/s12035-018-0925-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1999031053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999031053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4479f097ce4895b1d8738b6cc0c7dca74a1f4a1d2e1e989ac62272b67d1b0c5a3</originalsourceid><addsrcrecordid>eNp1kc1u2zAQhImiQeOkfYBeCgI9M-ZSkikeFaP5AZwfOOmZoKiVrMAWXZIq4DxRHjM0nBa55EAsAc7MB-4Q8h34GXAupwEEzwrGoWRciYI9fyITKArFAErxmUx4qTImZ3l5TE5CeOJcCODyCzkWKgeZSzkhLze99W55W7Esp3M3RN_XY8RAo6NxhfQhegyBeVybiA09x5X52ztPzdDQqm3RxkALdvVI7z22PvnNenpZnVe02uy6xqyNpw-7EHGT0rwbuxVdYjemsN4N1LUJ6WNvXfRu2w97DJrQDx29MDYmzBItbvcX-EqOWrMO-O1tnpLfF78e51dscXd5Pa8WzGZSRJbnUrVcSYt5qYoamlJmZT2zllvZWCNzA206jUBAVSpjZ0JIUc9kAzW3hclOyc9D7ta7PyOGqJ_c6IeE1KCU4hnwIksqOKjS8kJIX9db32-M32nget-NPnSjUzd6341-Tp4fb8ljvcHmv-NfGUkgDoKQnoYO_Tv0h6mvme6b4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999031053</pqid></control><display><type>article</type><title>MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Andolina, Diego ; Di Segni, Matteo ; Accoto, Alessandra ; Lo Iacono, Luisa ; Borreca, Antonella ; Ielpo, Donald ; Berretta, Nicola ; Perlas, Emerald ; Puglisi-Allegra, Stefano ; Ventura, Rossella</creator><creatorcontrib>Andolina, Diego ; Di Segni, Matteo ; Accoto, Alessandra ; Lo Iacono, Luisa ; Borreca, Antonella ; Ielpo, Donald ; Berretta, Nicola ; Perlas, Emerald ; Puglisi-Allegra, Stefano ; Ventura, Rossella</creatorcontrib><description>Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress. We have recently demonstrated that mice carrying a genetic deletion of all miR-34 isoforms (triple knockout, TKO) lack the stress-induced serotonin (5-HT) and GABA release in the medial prefrontal cortex (mpFC) and basolateral amygdala (BLA), respectively. Here, we evaluated if the absence of miR-34 was also able to modify the stress-coping strategy in the forced swimming test. We found that the blunted neurochemical response to stress was associated with lower levels of immobility (index of active coping behavior) in TKO compared to WT mice. Interestingly, among the brain regions mostly involved in the stress-related behaviors, the miR-34 displayed the strongest expression in the dorsal raphe nuclei (DRN) of wild-type (WT) mice. In the DRN, the corticotropin-releasing factor receptors (CRFR) 1 and 2, contribute to determine the stress-coping style and the CRFR1 is a target of miR-34. Thus, we hypothesized that the miR-34-dependent modulation of CRFR1 expression may be involved in the DRN regulation of stress-coping strategies. In line with this hypothesis, we found increased CRFR1 levels in the DNR of TKO compared to WT mice. Moreover, infusion of CRFR1 antagonist in the DRN of TKO mice reverted their behavioral and neurochemical phenotype. We propose that miR-34 modulate the mpFC 5-HT/BLA GABA response to stress acting on CRFR1 in the DRN and that this mechanism could contribute to determine individual stress-coping strategy.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-018-0925-z</identifier><identifier>PMID: 29417477</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acenaphthenes - pharmacology ; Amygdala ; Amygdala - drug effects ; Amygdala - metabolism ; Animal behavior ; Animals ; Behavior, Animal - drug effects ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Coping ; Coping behavior ; Corticotropin-releasing hormone ; Corticotropin-Releasing Hormone - pharmacology ; Dorsal Raphe Nucleus - drug effects ; Dorsal Raphe Nucleus - metabolism ; gamma-Aminobutyric Acid - metabolism ; Gene Deletion ; Immobilization ; Isoforms ; Male ; Mice ; Mice, Knockout ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Motor Activity - drug effects ; Neurobiology ; Neurology ; Neurons ; Neurosciences ; Neurotransmitters ; Phenotypes ; Prefrontal cortex ; Prefrontal Cortex - metabolism ; Raphe nuclei ; Receptors, Corticotropin-Releasing Hormone - metabolism ; Rodents ; Serotonin ; Serotonin - metabolism ; Stress ; Stress, Psychological - genetics ; Swimming</subject><ispartof>Molecular neurobiology, 2018-09, Vol.55 (9), p.7401-7412</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Molecular Neurobiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4479f097ce4895b1d8738b6cc0c7dca74a1f4a1d2e1e989ac62272b67d1b0c5a3</citedby><cites>FETCH-LOGICAL-c372t-4479f097ce4895b1d8738b6cc0c7dca74a1f4a1d2e1e989ac62272b67d1b0c5a3</cites><orcidid>0000-0002-9143-858X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29417477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andolina, Diego</creatorcontrib><creatorcontrib>Di Segni, Matteo</creatorcontrib><creatorcontrib>Accoto, Alessandra</creatorcontrib><creatorcontrib>Lo Iacono, Luisa</creatorcontrib><creatorcontrib>Borreca, Antonella</creatorcontrib><creatorcontrib>Ielpo, Donald</creatorcontrib><creatorcontrib>Berretta, Nicola</creatorcontrib><creatorcontrib>Perlas, Emerald</creatorcontrib><creatorcontrib>Puglisi-Allegra, Stefano</creatorcontrib><creatorcontrib>Ventura, Rossella</creatorcontrib><title>MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress. We have recently demonstrated that mice carrying a genetic deletion of all miR-34 isoforms (triple knockout, TKO) lack the stress-induced serotonin (5-HT) and GABA release in the medial prefrontal cortex (mpFC) and basolateral amygdala (BLA), respectively. Here, we evaluated if the absence of miR-34 was also able to modify the stress-coping strategy in the forced swimming test. We found that the blunted neurochemical response to stress was associated with lower levels of immobility (index of active coping behavior) in TKO compared to WT mice. Interestingly, among the brain regions mostly involved in the stress-related behaviors, the miR-34 displayed the strongest expression in the dorsal raphe nuclei (DRN) of wild-type (WT) mice. In the DRN, the corticotropin-releasing factor receptors (CRFR) 1 and 2, contribute to determine the stress-coping style and the CRFR1 is a target of miR-34. Thus, we hypothesized that the miR-34-dependent modulation of CRFR1 expression may be involved in the DRN regulation of stress-coping strategies. In line with this hypothesis, we found increased CRFR1 levels in the DNR of TKO compared to WT mice. Moreover, infusion of CRFR1 antagonist in the DRN of TKO mice reverted their behavioral and neurochemical phenotype. We propose that miR-34 modulate the mpFC 5-HT/BLA GABA response to stress acting on CRFR1 in the DRN and that this mechanism could contribute to determine individual stress-coping strategy.</description><subject>Acenaphthenes - pharmacology</subject><subject>Amygdala</subject><subject>Amygdala - drug effects</subject><subject>Amygdala - metabolism</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Behavior, Animal - drug effects</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Coping</subject><subject>Coping behavior</subject><subject>Corticotropin-releasing hormone</subject><subject>Corticotropin-Releasing Hormone - pharmacology</subject><subject>Dorsal Raphe Nucleus - drug effects</subject><subject>Dorsal Raphe Nucleus - metabolism</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Gene Deletion</subject><subject>Immobilization</subject><subject>Isoforms</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Motor Activity - drug effects</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Neurotransmitters</subject><subject>Phenotypes</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Raphe nuclei</subject><subject>Receptors, Corticotropin-Releasing Hormone - metabolism</subject><subject>Rodents</subject><subject>Serotonin</subject><subject>Serotonin - metabolism</subject><subject>Stress</subject><subject>Stress, Psychological - genetics</subject><subject>Swimming</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u2zAQhImiQeOkfYBeCgI9M-ZSkikeFaP5AZwfOOmZoKiVrMAWXZIq4DxRHjM0nBa55EAsAc7MB-4Q8h34GXAupwEEzwrGoWRciYI9fyITKArFAErxmUx4qTImZ3l5TE5CeOJcCODyCzkWKgeZSzkhLze99W55W7Esp3M3RN_XY8RAo6NxhfQhegyBeVybiA09x5X52ztPzdDQqm3RxkALdvVI7z22PvnNenpZnVe02uy6xqyNpw-7EHGT0rwbuxVdYjemsN4N1LUJ6WNvXfRu2w97DJrQDx29MDYmzBItbvcX-EqOWrMO-O1tnpLfF78e51dscXd5Pa8WzGZSRJbnUrVcSYt5qYoamlJmZT2zllvZWCNzA206jUBAVSpjZ0JIUc9kAzW3hclOyc9D7ta7PyOGqJ_c6IeE1KCU4hnwIksqOKjS8kJIX9db32-M32nget-NPnSjUzd6341-Tp4fb8ljvcHmv-NfGUkgDoKQnoYO_Tv0h6mvme6b4A</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Andolina, Diego</creator><creator>Di Segni, Matteo</creator><creator>Accoto, Alessandra</creator><creator>Lo Iacono, Luisa</creator><creator>Borreca, Antonella</creator><creator>Ielpo, Donald</creator><creator>Berretta, Nicola</creator><creator>Perlas, Emerald</creator><creator>Puglisi-Allegra, Stefano</creator><creator>Ventura, Rossella</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9143-858X</orcidid></search><sort><creationdate>20180901</creationdate><title>MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1</title><author>Andolina, Diego ; Di Segni, Matteo ; Accoto, Alessandra ; Lo Iacono, Luisa ; Borreca, Antonella ; Ielpo, Donald ; Berretta, Nicola ; Perlas, Emerald ; Puglisi-Allegra, Stefano ; Ventura, Rossella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4479f097ce4895b1d8738b6cc0c7dca74a1f4a1d2e1e989ac62272b67d1b0c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acenaphthenes - pharmacology</topic><topic>Amygdala</topic><topic>Amygdala - drug effects</topic><topic>Amygdala - metabolism</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Behavior, Animal - drug effects</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Coping</topic><topic>Coping behavior</topic><topic>Corticotropin-releasing hormone</topic><topic>Corticotropin-Releasing Hormone - pharmacology</topic><topic>Dorsal Raphe Nucleus - drug effects</topic><topic>Dorsal Raphe Nucleus - metabolism</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Gene Deletion</topic><topic>Immobilization</topic><topic>Isoforms</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Motor Activity - drug effects</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Neurotransmitters</topic><topic>Phenotypes</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Raphe nuclei</topic><topic>Receptors, Corticotropin-Releasing Hormone - metabolism</topic><topic>Rodents</topic><topic>Serotonin</topic><topic>Serotonin - metabolism</topic><topic>Stress</topic><topic>Stress, Psychological - genetics</topic><topic>Swimming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andolina, Diego</creatorcontrib><creatorcontrib>Di Segni, Matteo</creatorcontrib><creatorcontrib>Accoto, Alessandra</creatorcontrib><creatorcontrib>Lo Iacono, Luisa</creatorcontrib><creatorcontrib>Borreca, Antonella</creatorcontrib><creatorcontrib>Ielpo, Donald</creatorcontrib><creatorcontrib>Berretta, Nicola</creatorcontrib><creatorcontrib>Perlas, Emerald</creatorcontrib><creatorcontrib>Puglisi-Allegra, Stefano</creatorcontrib><creatorcontrib>Ventura, Rossella</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andolina, Diego</au><au>Di Segni, Matteo</au><au>Accoto, Alessandra</au><au>Lo Iacono, Luisa</au><au>Borreca, Antonella</au><au>Ielpo, Donald</au><au>Berretta, Nicola</au><au>Perlas, Emerald</au><au>Puglisi-Allegra, Stefano</au><au>Ventura, Rossella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>55</volume><issue>9</issue><spage>7401</spage><epage>7412</epage><pages>7401-7412</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress. We have recently demonstrated that mice carrying a genetic deletion of all miR-34 isoforms (triple knockout, TKO) lack the stress-induced serotonin (5-HT) and GABA release in the medial prefrontal cortex (mpFC) and basolateral amygdala (BLA), respectively. Here, we evaluated if the absence of miR-34 was also able to modify the stress-coping strategy in the forced swimming test. We found that the blunted neurochemical response to stress was associated with lower levels of immobility (index of active coping behavior) in TKO compared to WT mice. Interestingly, among the brain regions mostly involved in the stress-related behaviors, the miR-34 displayed the strongest expression in the dorsal raphe nuclei (DRN) of wild-type (WT) mice. In the DRN, the corticotropin-releasing factor receptors (CRFR) 1 and 2, contribute to determine the stress-coping style and the CRFR1 is a target of miR-34. Thus, we hypothesized that the miR-34-dependent modulation of CRFR1 expression may be involved in the DRN regulation of stress-coping strategies. In line with this hypothesis, we found increased CRFR1 levels in the DNR of TKO compared to WT mice. Moreover, infusion of CRFR1 antagonist in the DRN of TKO mice reverted their behavioral and neurochemical phenotype. We propose that miR-34 modulate the mpFC 5-HT/BLA GABA response to stress acting on CRFR1 in the DRN and that this mechanism could contribute to determine individual stress-coping strategy.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29417477</pmid><doi>10.1007/s12035-018-0925-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9143-858X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2018-09, Vol.55 (9), p.7401-7412
issn 0893-7648
1559-1182
language eng
recordid cdi_proquest_journals_1999031053
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Acenaphthenes - pharmacology
Amygdala
Amygdala - drug effects
Amygdala - metabolism
Animal behavior
Animals
Behavior, Animal - drug effects
Biomedical and Life Sciences
Biomedicine
Cell Biology
Coping
Coping behavior
Corticotropin-releasing hormone
Corticotropin-Releasing Hormone - pharmacology
Dorsal Raphe Nucleus - drug effects
Dorsal Raphe Nucleus - metabolism
gamma-Aminobutyric Acid - metabolism
Gene Deletion
Immobilization
Isoforms
Male
Mice
Mice, Knockout
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Motor Activity - drug effects
Neurobiology
Neurology
Neurons
Neurosciences
Neurotransmitters
Phenotypes
Prefrontal cortex
Prefrontal Cortex - metabolism
Raphe nuclei
Receptors, Corticotropin-Releasing Hormone - metabolism
Rodents
Serotonin
Serotonin - metabolism
Stress
Stress, Psychological - genetics
Swimming
title MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA-34%20Contributes%20to%20the%20Stress-related%20Behavior%20and%20Affects%205-HT%20Prefrontal/GABA%20Amygdalar%20System%20through%20Regulation%20of%20Corticotropin-releasing%20Factor%20Receptor%201&rft.jtitle=Molecular%20neurobiology&rft.au=Andolina,%20Diego&rft.date=2018-09-01&rft.volume=55&rft.issue=9&rft.spage=7401&rft.epage=7412&rft.pages=7401-7412&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-018-0925-z&rft_dat=%3Cproquest_cross%3E1999031053%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-4479f097ce4895b1d8738b6cc0c7dca74a1f4a1d2e1e989ac62272b67d1b0c5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1999031053&rft_id=info:pmid/29417477&rfr_iscdi=true